4 research outputs found

    MOVPE InP based material for millimeter and submillimeter wave generation and amplification, Journal of Telecommunications and Information Technology, 2002, nr 1

    Get PDF
    The potential of the MOVPE growth process for millimeter and submillimeter wave generation and amplification is presented. The increase in layer quality, the improved homogeneity and purity, the precision of mono-layers growth and wide spectrum III-V compounds makes MOVPE techniques very attractive for modern device applications. The characterisation results of the heterostructures dedicated for HBV varactors and 2-DEG transistors (HEMT) are described

    First vertical-cavity surface-emitting laser made entirely in Poland

    No full text
    The paper presents the first vertical-cavity surface-emitting lasers (VCSELs) designed, grown, processed and evaluated entirely in Poland. The lasers emit at »850 nm, which is the most commonly used wavelength for short-reach (<2 km) optical data communication across multiple-mode optical fiber. Our devices present state-of-the-art electrical and optical parameters, e.g. high room-temperature maximum optical powers of over 5 mW, laser emission at heat-sink temperatures up to at least 95°C, low threshold current densities (<10 kA/cm2) and wall-plug efficiencies exceeding 30% VCSELs can also be easily adjusted to reach emission wavelengths of around 780 to 1090 nm

    Characterization of AIIIBV\mathrm{A^{III}B^V} superlattices by means of synchrotron diffraction topography and high-resolution X-ray diffraction

    No full text
    New possibilities are presented for the characterization of AIII^{III}BV^V mixed superlattice compounds by the complementary use of synchrotron diffraction topography and rocking curves. In particular, using a synchrotron white beam and the section diffraction pattern of a 5 µm slit taken at a 10 cm film-to-crystal distance, it was possible to reproduce a set of stripes corresponding to interference fringes. These are analogous to the interference maxima revealed in high-resolution rocking curves, but are created by the changes in orientation of the planes inclined to the surface which are induced by unrelaxed strain. The section diffraction topographic method enabled examination of the sample homogeneity along the narrow intersecting beam. This was important in the case of the present sample containing a twin lamella in the InP substrate wafer. Both the section and projection Bragg case topographic methods enabled the crystallographic identification of the twin lamella. Another characteristic feature indicated in the section topography was the bending of the stripes corresponding to the superlattice peaks close to the boundaries of the twin lamella. The most probable interpretation of this phenomenon is an increase in the thickness of the deposited layers close to the lamella, together with possible changes in the chemical composition, leading to a decrease in the mean lattice parameter in the superlattice
    corecore