478 research outputs found
Breakdown of a conservation law in incommensurate systems
We show that invariance properties of the Lagrangian of an incommensurate
system, as described by the Frenkel Kontorova model, imply the existence of a
generalized angular momentum which is an integral of motion if the system
remains floating. The behavior of this quantity can therefore monitor the
character of the system as floating (when it is conserved) or locked (when it
is not). We find that, during the dynamics, the non-linear couplings of our
model cause parametric phonon excitations which lead to the appearance of
Umklapp terms and to a sudden deviation of the generalized momentum from a
constant value, signalling a dynamical transition from a floating to a pinned
state. We point out that this transition is related but does not coincide with
the onset of sliding friction which can take place when the system is still
floating.Comment: 7 pages, 6 figures, typed with RevTex, submitted to Phys. Rev. E
Replaced 27-03-2001: changes to text, minor revision of figure
A Bose gas in a single-beam optical dipole trap
We study an ultracold Bose gas in an optical dipole trap consisting of one
single focused laser beam. An analytical expression for the corresponding
density of states beyond the usual harmonic approximation is obtained. We are
thus able to discuss the existence of a critical temperature for Bose-Einstein
condensation and find that the phase transition must be enabled by a cutoff
near the threshold. Moreover, we study the dynamics of evaporative cooling and
observe significant deviations from the findings for the well-established
harmonic approximation. Furthermore, we investigate Bose-Einstein condensates
in such a trap in Thomas-Fermi approximation and determine analytical
expressions for chemical potential, internal energy and Thomas-Fermi radii
beyond the usual harmonic approximation
Electron spin tomography through counting statistics: a quantum trajectory approach
We investigate the dynamics of electron spin qubits in quantum dots.
Measurement of the qubit state is realized by a charge current through the dot.
The dynamics is described in the framework of the quantum trajectory approach,
widely used in quantum optics, and we show that it can be applied successfully
to problems in condensed matter physics. The relevant master equation dynamics
is unravelled to simulate stochastic tunneling events of the current through
the dot.Quantum trajectories are then used to extract the counting statistics
of the current. We show how, in combination with an electron spin resonance
(ESR) field, counting statistics can be employed for quantum state tomography
of the qubit state. Further, it is shown how decoherence and relaxation time
scales can be estimated with the help of counting statistics, in the time
domain. Finally, we discuss a setup for single shot measurement of the qubit
state without the need for spin-polarized leads.Comment: 23 pages, 10 figures, RevTeX4, submitted to PR
Quantum trajectories for Brownian motion
We present the stochastic Schroedinger equation for the dynamics of a quantum
particle coupled to a high temperature environment and apply it the dynamics of
a driven, damped, nonlinear quantum oscillator. Apart from an initial slip on
the environmental memory time scale, in the mean, our result recovers the
solution of the known non-Lindblad quantum Brownian motion master equation. A
remarkable feature of our approach is its localization property: individual
quantum trajectories remain localized wave packets for all times, even for the
classically chaotic system considered here, the localization being stronger the
smaller .Comment: 4 pages, 3 eps figure
Electronic and phononic properties of the chalcopyrite CuGaS2
The availability of ab initio electronic calculations and the concomitant
techniques for deriving the corresponding lattice dynamics have been profusely
used for calculating thermodynamic and vibrational properties of
semiconductors, as well as their dependence on isotopic masses. The latter have
been compared with experimental data for elemental and binary semiconductors
with different isotopic compositions. Here we present theoretical and
experimental data for several vibronic and thermodynamic properties of CuGa2, a
canonical ternary semiconductor of the chalcopyrite family. Among these
properties are the lattice parameters, the phonon dispersion relations and
densities of states (projected on the Cu, Ga, and S constituents), the specific
heat and the volume thermal expansion coefficient. The calculations were
performed with the ABINIT and VASP codes within the LDA approximation for
exchange and correlation and the results are compared with data obtained on
samples with the natural isotope composition for Cu, Ga and S, as well as for
isotope enriched samples.Comment: 9 pages, 8 Figures, submitted to Phys. Rev
Assessment of human immediate response capability related to tsunami threats in Indonesia at a sub-national scale
Human immediate response is contextualized into different time compartments reflecting the tsunami early warning chain. Based on the different time compartments the available response time and evacuation time is quantified. The latter incorporates accessibility of safe areas determined by a hazard assessment, as well as environmental and demographic impacts on evacuation speed properties assessed using a Cost Distance Weighting GIS approach. <br><br> Approximately 4.35 million Indonesians live in tsunami endangered areas on the southern coasts of Sumatra, Java and Bali and have between 20 and 150 min to reach a tsunami-safe area. Most endangered areas feature longer estimated-evacuation times and hence the population possesses a weak immediate response capability leaving them more vulnerable to being directly impacted by a tsunami. At a sub-national scale these hotspots were identified and include: the Mentawai islands off the Sumatra coast, various sub-districts on Sumatra and west and east Java. Based on the presented approach a temporal dynamic estimation of casualties and displacements as a function of available response time is obtained for the entire coastal area. As an example, a worst case tsunami scenario for Kuta (Bali) results in casualties of 25 000 with an optimal response time (direct evacuation when receiving a tsunami warning) and 120 000 for minimal response time (no evacuation). The estimated casualties correspond well to observed/reported values and overall model uncertainty is low with a standard error of 5%. <br><br> The results obtained allow for prioritization of intervention measures such as early warning chain, evacuation and contingency planning, awareness and preparedness strategies down to a sub-district level and can be used in tsunami early warning decision support
"Last-Mile" preparation for a potential disaster
Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity
Irreversible impact of chronic hepatitis C virus infection on human natural killer cell diversity
Diversity is crucial for the immune system to efficiently combat infections. Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to the control of viral infections. NK cells were for long thought to be a homogeneous population of cells. However, recent work has instead revealed NK cells to represent a highly diverse population of immune cells where a vast number of subpopulations with distinct characteristics exist across tissues. However, the degree to which a chronic viral infection affects NK cell diversity remains elusive. Hepatitis C virus (HCV) is effective in establishing chronic infection in humans. During the last years, new direct-acting antiviral drugs (DAA) have revolutionized treatment of chronic hepatitis C, enabling rapid cure in the majority of patients. This allows us to study the influence of a chronic viral infection and its subsequent elimination on the NK cell compartment with a focus on NK cell diversity. In our recent study (Nat Commun, 9:2275), we show that chronic HCV infection irreversibly impacts human NK cell repertoire diversity
Qubit Disentanglement and Decoherence via Dephasing
We consider whether quantum coherence in the form of mutual entanglement
between a pair of qubits is susceptible to decay that may be more rapid than
the decay of the coherence of either qubit individually. An instance of
potential importance for solid state quantum computing arises if embedded
qubits (spins, quantum dots, Cooper pair boxes, etc.) are exposed to global and
local noise at the same time. Here we allow separate phase-noisy channels to
affect local and non-local measures of system coherence. We find that the time
for decay of the qubit entanglement can be significantly shorter than the time
for local dephasing of the individual qubits.Comment: REVTeX, 9 pages, 1 figure, v2 with minor changes, reference adde
On the driven Frenkel-Kontorova model: I. Uniform sliding states and dynamical domains of different particle densities
The dynamical behavior of a harmonic chain in a spatially periodic potential
(Frenkel-Kontorova model, discrete sine-Gordon equation) under the influence of
an external force and a velocity proportional damping is investigated. We do
this at zero temperature for long chains in a regime where inertia and damping
as well as the nearest-neighbor interaction and the potential are of the same
order. There are two types of regular sliding states: Uniform sliding states,
which are periodic solutions where all particles perform the same motion
shifted in time, and nonuniform sliding states, which are quasi-periodic
solutions where the system forms patterns of domains of different uniform
sliding states. We discuss the properties of this kind of pattern formation and
derive equations of motion for the slowly varying average particle density and
velocity. To observe these dynamical domains we suggest experiments with a
discrete ring of at least fifty Josephson junctions.Comment: Written in RevTeX, 9 figures in PostScrip
- ā¦