593 research outputs found

    Relativistic formulation of quantum state diffusion?

    Full text link
    The recently reported relativistic formulation of the well-known non-relativistic quantum state diffusion is seriously mistaken. It predicts, for instance, inconsistent measurement outcomes for the same system when seen by two different inertial observers.Comment: 5 pages LaTeX, submitted to J. Phys.

    Decoherence and the Nature of System-Environment Correlations

    Full text link
    We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the build-up of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed regime where the qubit dynamics can be described by a Markov master equation of Lindblad type, we find that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is still separable - no entanglement is involved. In general, both "separable" and "entangling" decoherence occurs, depending on temperature and initial qubit state. Moreover, we find situations where classical and quantum correlations periodically alternate as a function of time in the regime of low temperatures

    Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach

    Full text link
    Absorption spectra of small molecular aggregates (oligomers) are considered. The dipole-dipole interaction between the monomers leads to shifts of the oligomer spectra with respect to the monomer absorption. The line-shapes of monomer as well as oligomer absorption depend strongly on the coupling to vibrational modes. Using a recently developed approach [Roden et. al, PRL 103, 058301] we investigate the length dependence of spectra of one-dimensional aggregates for various values of the interaction strength between the monomers. It is demonstrated, that the present approach is well suited to describe the occurrence of the J- and H-bands

    A Bose gas in a single-beam optical dipole trap

    Full text link
    We study an ultracold Bose gas in an optical dipole trap consisting of one single focused laser beam. An analytical expression for the corresponding density of states beyond the usual harmonic approximation is obtained. We are thus able to discuss the existence of a critical temperature for Bose-Einstein condensation and find that the phase transition must be enabled by a cutoff near the threshold. Moreover, we study the dynamics of evaporative cooling and observe significant deviations from the findings for the well-established harmonic approximation. Furthermore, we investigate Bose-Einstein condensates in such a trap in Thomas-Fermi approximation and determine analytical expressions for chemical potential, internal energy and Thomas-Fermi radii beyond the usual harmonic approximation

    System-environment correlations and Non-Markovian dynamics

    Full text link
    We determine the total state dynamics of a dephasing open quantum system using the standard environment of harmonic oscillators. Of particular interest are random unitary approaches to the same reduced dynamics and system-environment correlations in the full model. Concentrating on a model with an at times negative dephasing rate, the issue of "non-Markovianity" will also be addressed. Crucially, given the quantum environment, the appearance of non-Markovian dynamics turns out to be accompanied by a loss of system-environment correlations. Depending on the initial purity of the qubit state, these system-environment correlations may be purely classical over the whole relevant time scale, or there may be intervals of genuine system-environment entanglement. In the latter case, we see no obvious relation between the build-up or decay of these quantum correlations and "Non-Markovianity"

    Decoherence scenarios from micro- to macroscopic superpositions

    Full text link
    Environment induced decoherence entails the absence of quantum interference phenomena from the macroworld. The loss of coherence between superposed wave packets depends on their separation. The precise temporal course depends on the relative size of the time scales for decoherence and other processes taking place in the open system and its environment. We use the exactly solvable model of an harmonic oscillator coupled to a bath of oscillators to illustrate various decoherence scenarios: These range from exponential golden-rule decay for microscopic superpositions, system-specific decay for larger separations in a crossover regime, and finally universal interaction-dominated decoherence for ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412

    Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates

    Full text link
    In many molecular systems one encounters the situation where electronic excitations couple to a quasi-continuum of phonon modes. That continuum may be highly structured e.g. due to some weakly damped high frequency modes. To handle such a situation, an approach combining the non-Markovian quantum state diffusion (NMQSD) description of open quantum systems with an efficient but abstract approximation was recently applied to calculate energy transfer and absorption spectra of molecular aggregates [Roden, Eisfeld, Wolff, Strunz, PRL 103 (2009) 058301]. To explore the validity of the used approximation for such complicated systems, in the present work we compare the calculated (approximative) absorption spectra with exact results. These are obtained from the method of pseudomodes, which we show to be capable of determining the exact spectra for small aggregates and a few pseudomodes. It turns out that in the cases considered, the results of the two approaches mostly agree quite well. The advantages and disadvantages of the two approaches are discussed

    Quantum trajectories for Brownian motion

    Get PDF
    We present the stochastic Schroedinger equation for the dynamics of a quantum particle coupled to a high temperature environment and apply it the dynamics of a driven, damped, nonlinear quantum oscillator. Apart from an initial slip on the environmental memory time scale, in the mean, our result recovers the solution of the known non-Lindblad quantum Brownian motion master equation. A remarkable feature of our approach is its localization property: individual quantum trajectories remain localized wave packets for all times, even for the classically chaotic system considered here, the localization being stronger the smaller \hbar.Comment: 4 pages, 3 eps figure

    Fidelity and Purity Decay in Weakly Coupled Composite Systems

    Full text link
    We study the stability of unitary quantum dynamics of composite systems (for example: central system + environment) with respect to weak interaction between the two parts. Unified theoretical formalism is applied to study different physical situations: (i) coherence of a forward evolution as measured by purity of the reduced density matrix, (ii) stability of time evolution with respect to small coupling between subsystems, and (iii) Loschmidt echo measuring dynamical irreversibility. Stability has been measured either by fidelity of pure states of a composite system, or by the so-called reduced fidelity of reduced density matrices within a subsystem. Rigorous inequality among fidelity, reduced-fidelity and purity is proved and a linear response theory is developed expressing these three quantities in terms of time correlation functions of the generator of interaction. The qualitatively different cases of regular (integrable) or mixing (chaotic in the classical limit) dynamics in each of the subsystems are discussed in detail. Theoretical results are demonstrated and confirmed in a numerical example of two coupled kicked tops.Comment: 21 pages, 12 eps figure

    Stochastic Schroedinger Equations with General Complex Gaussian Noises

    Full text link
    Within the framework of stochastic Schroedinger equations, we show that the correspondence between statevector equations and ensemble equations is infinitely many to one, and we discuss the consequences. We also generalize the results of [Phys. Lett. A 224, p. 25 (1996)] to the case of more general complex Gaussian noises and analyze the two important cases of purely real and purely imaginary stochastic processes.Comment: 5 pages, LaTeX. To appear on Phys. Rev.
    corecore