661 research outputs found

    Heat Capacity in Magnetic and Electric Fields Near the Ferroelectric Transition in Tri-Glycine Sulfate

    Full text link
    Specific-heat measurements are reported near the Curie temperature (TCT_C~= 320 K) on tri-glycine sulfate. Measurements were made on crystals whose surfaces were either non-grounded or short-circuited, and were carried out in magnetic fields up to 9 T and electric fields up to 220 V/cm. In non-grounded crystals we find that the shape of the specific-heat anomaly near TCT_C is thermally broadened. However, the anomaly changes to the characteristic sharp λ\lambda-shape expected for a continuous transition with the application of either a magnetic field or an electric field. In crystals whose surfaces were short-circuited with gold, the characteristic λ\lambda-shape appeared in the absence of an external field. This effect enabled a determination of the critical exponents above and below TCT_C, and may be understood on the basis that the surface charge originating from the pyroelectric coefficient, dP/dTdP/dT, behaves as if shorted by external magnetic or electric fields.Comment: 4 Pages, 4 Figures. To Appear in Applied Physics Letters_ January 200

    Phenomenological Modeling of Memristive Devices

    Full text link
    We present a computationally inexpensive yet accurate phenomenological model of memristive behavior in titanium dioxide devices by fitting experimental data. By design, the model predicts most accurately I-V relation at small non-disturbing electrical stresses, which is often the most critical range of operation for circuit modeling. While the choice of fitting functions is motivated by the switching and conduction mechanisms of particular titanium dioxide devices, the proposed modeling methodology is general enough to be applied to different types of memory devices which feature smooth non-abrupt resistance switching.Comment: 17 pages, 5 figure

    Hysteresis Switching Loops in Ag-manganite memristive interfaces

    Get PDF
    Multilevel resistance states in silver-manganite interfaces are studied both experimentally and through a realistic model that includes as a main ingredient the oxygen vacancies diffusion under applied electric fields. The switching threshold and amplitude studied through Hysteresis Switching Loops are found to depend critically on the initial state. The associated vacancy profiles further unveil the prominent role of the effective electric field acting at the interfaces. While experimental results validate main assumptions of the model, the simulations allow to disentangle the microscopic mechanisms behind the resistive switching in metal-transition metal oxide interfaces.Comment: 14 pages, 3 figures, to be published in Jour. of Appl. Phy

    Thermodynamics of Ferrotoroidic Materials: Toroidocaloric Effect

    Full text link
    The three primary ferroics, namely ferromagnets, ferroelectrics and ferroelastics exhibit corresponding large (or even giant) magnetocaloric,electrocaloric and elastocaloric effects when a phase transition is induced by the application of an appropriate external field. Recently the suite of primary ferroics has been extended to include ferrotoroidic materials in which there is an ordering of toroidic moments in the form of magnetic vortex-like structures, examples being LiCo(PO_4)_3 and Ba_2CoGe_2O_7. In the present work we formulate the thermodynamics of ferrotoroidic materials. Within a Landau free energy framework we calculate the toroidocaloric effect by quantifying isothermal entropy change (or adiabatic temperature change) in the presence of an applied toroidic field when usual magnetization and polarization may also be present simultaneously. We also obtain a nonlinear Clausius-Clapeyron relation for phase coexistence.Comment: 10 pages, 5 Figure

    Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2

    Full text link
    We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohm's Law and Newton's Law of Cooling, and fitting this model to experimental data. This threshold switching is the 'soft breakdown' observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to 'ON' or 'SET' switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.Comment: 13 pages, 2 figure
    • …
    corecore