2 research outputs found

    Prediction of Orbital Ordering in Single-Layered Ruthenates

    Full text link
    The key role of the orbital degree of freedom to understand the magnetic properties of layered ruthenates is here discussed. In the G-type antiferromagnetic phase of Ca2_2RuO4_4, recent X-ray experiments reported the presence of 0.5 hole per site in the dxyd_{xy} orbital, while the dyzd_{\rm yz} and dzxd_{zx} orbitals contain 1.5 holes. This unexpected t2gt_{2g} hole distribution is explained by a novel state with orbital ordering (OO), stabilized by a combination of Coulomb interactions and lattice distortions. In addition, the rich phase diagram presented here suggests the possibility of large magnetoresistance effects, and predicts a new ferromagnetic OO phase in ruthenates.Comment: 4 pages, Revtex, with 2 figures embedded in the text. Submitted to Phys. Rev. Let

    Orbital ordering phenomena in dd- and ff-electron systems

    Full text link
    In recent decades, novel magnetism of dd- and ff-electron compounds has been discussed very intensively both in experimental and theoretical research fields of condensed matter physics. It has been recognized that those material groups are in the same category of strongly correlated electron systems, while the low-energy physics of dd- and ff-electron compounds has been separately investigated rather in different manners. One of common features of both dd- and ff-electron systems is certainly the existence of active orbital degree of freedom, but in ff-electron materials, due to the strong spin-orbit interaction in rare-earth and actinide ions, the physics seems to be quite different from that of dd-electron systems. In general, when the number of internal degrees of freedom and relevant interactions is increased, it is possible to obtain rich phase diagram including large varieties of magnetic phases by using several kinds of theoretical techniques. However, we should not be simply satisfied with the reproduction of rich phase diagram. It is believed that more essential point is to seek for a simple principle penetrating complicated phenomena in common with dd- and ff-electron materials, which opens the door to a new stage in orbital physics. In this sense, it is considered to be an important task of this article to explain common features of magnetism in dd- and ff-electron systems from a microscopic viewpoint, using a key concept of orbital ordering, in addition to the review of the complex phase diagram of each material group.Comment: 112 pages, 38 figure
    corecore