7 research outputs found

    The Coagulation Box and a New Hemoglobin-Driven Algorithm for Bleeding Control in Patients with Severe Multiple Traumas

    Get PDF
    Background: Extensive hemorrhage is the leading cause of death in the first few hours following multiple traumas. Therefore, early and aggressive treatment of clotting disorders could reduce mortality. Unfortunately, the availability of results from commonly performed blood coagulation studies are often delayed whereas hemoglobin (Hb) levels are quickly available. Objectives: In this study, we evaluated the use of initial hemoglobin (Hb) levels as a guide line for the initial treatment of clotting disorders in multiple trauma patients. Patients and Methods: We have developed an Hb-driven algorithm to initiate the initial clotting therapy. The algorithm contains three different steps for aggressive clotting therapy depending on the first Hb value measured in the shock trauma room, (SR) and utilizes fibrinogen, prothrombin complex concentrate (PCC), factor VIIa, tranexamic acid and desmopressin. The above-mentioned drugs were stored in a special “coagulation box” in the hospital pharmacy, and this box could be immediately brought to the SR or operating room (OR) upon request. Despite the use of clotting factors, transfusions using red blood cells (RBC) and fresh frozen plasma (FFP) were performed at an RBC-to-FFP ratio of 2:1 to 1:1. Results: Over a 12-month investigation period, 123 severe multiple trauma patients needing intensive care therapy were admitted to our trauma center (mean age 48 years, mean ISS (injury severity score) 30). Fourteen (11%) patients died; 25 (mean age 51.5 years, mean ISS 53) of the 123 patients were treated using the “coagulation box,” and 17 patients required massive transfusions. Patients treated with the “coagulation box” required an average dose of 16.3 RBC and 12.9 FFP, whereas 17 of the 25 patients required an average dose of 3.6 platelet packs. According to the algorithm, 25 patients received fibrinogen (average dose of 8.25 g), 24 (96%) received PCC (3000 IU.), 14 (56%) received desmopressin (36.6 µg), 13 (52%) received tranexamic acid (2.88 g), and 11 (44%) received factor VIIa (3.7 mg). The clotting parameters markedly improved between SR admission and ICU admission. Of the 25 patients, 16 (64%) survived. The revised injury severity classification (RISC) predicted a survival rate of 41%, which corresponds to a standardized mortality ratio (SMR) of 0.62, which implies a higher survival rate than predicted. Conclusions: An Hb-driven algorithm, in combination with the “coagulation box” and the early use of clotting factors, could be a simple and effective tool for improving coagulopathy in multiple trauma patients

    Proenkephalin as a new biomarker for pediatric acute kidney injury - Reference values and performance in children under one year of age

    Get PDF
    Acute kidney injury (AKI) is common in critically ill children, but current biomarkers are suboptimal. Proenkephalin A 119-159 (PENK) is a promising new biomarker for AKI in adults, but pediatric data is lacking. We determined PENK reference intervals for healthy children, crucial for clinical implementation, and explored concentrations in critically ill infants aged under 1 year. Observational cohort study in healthy infants and critically ill children aged 0-1 years. Reference values were determined using generalized additive models. Plasma PENK concentrations between healthy children and critically ill children with and without AKI, were compared using linear mixed modelling. The performance of PENK as AKI biomarker was compared to cystatin C (CysC) and β-trace protein (BTP) using receiver-operating-characteristic (ROC) analysis. PENK concentrations in 100 healthy infants were stable during the first year of life (median 517.3 pmol/L). Median PENK concentrations in 91 critically ill children, were significantly higher in those with AKI (n=40) (KDIGO Stage 1 507.9 pmol/L, Stage 2 704.0 pmol/L, Stage 3 930.5 pmol/L) than non-AKI patients (n=51, 432.2 pmol/L) (p < 0.001). PENK appeared to relate better to AKI diagnosis than CysC and BTP (AUROC PENK 0.858, CysC 0.770 and BTP 0.711) in the first 24 h after recruitment. PENK reference values are much higher in young infants than adults, but clearly discriminate between children with and without AKI, with comparable or better performance than CysC and BTP. Our results illustrate the importance of establishing age-normalized reference values and indicate PENK as a promising pediatric AKI biomarker
    corecore