650 research outputs found
Simulation of a flux emergence event and comparison with observations by Hinode
We study the observational signature of flux emergence in the photosphere
using synthetic data from a 3D MHD simulation of the emergence of a twisted
flux tube. Several stages in the emergence process are considered. At every
stage we compute synthetic Stokes spectra of the two iron lines Fe I 6301.5
{\AA} and Fe I 6302.5 {\AA} and degrade the data to the spatial and spectral
resolution of Hinode's SOT/SP. Then, following observational practice, we apply
Milne-Eddington-type inversions to the synthetic spectra in order to retrieve
various atmospheric parameters and compare the results with recent Hinode
observations. During the emergence sequence, the spectral lines sample
different parts of the rising flux tube, revealing its twisted structure. The
horizontal component of the magnetic field retrieved from the simulations is
close to the observed values. The flattening of the flux tube in the
photosphere is caused by radiative cooling, which slows down the ascent of the
tube to the upper solar atmosphere. Consistent with the observations, the
rising magnetized plasma produces a blue shift of the spectral lines during a
large part of the emergence sequence.Comment: A&A Letter, 3 figure
Simulation of the Formation of a Solar Active Region
We present a radiative magnetohydrodynamics simulation of the formation of an
Active Region on the solar surface. The simulation models the rise of a buoyant
magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the
solar photosphere. The rise of the magnetic plasma in the convection zone is
accompanied by predominantly horizontal expansion. Such an expansion leads to a
scaling relation between the plasma density and the magnetic field strength
such that . The emergence of magnetic flux into the
photosphere appears as a complex magnetic pattern, which results from the
interaction of the rising magnetic field with the turbulent convective flows.
Small-scale magnetic elements at the surface first appear, followed by their
gradual coalescence into larger magnetic concentrations, which eventually
results in the formation of a pair of opposite polarity spots. Although the
mean flow pattern in the vicinity of the developing spots is directed radially
outward, correlations between the magnetic field and velocity field
fluctuations allow the spots to accumulate flux. Such correlations result from
the Lorentz-force driven, counter-streaming motion of opposite-polarity
fragments. The formation of the simulated Active Region is accompanied by
transient light bridges between umbrae and umbral dots. Together with recent
sunspot modeling, this work highlights the common magnetoconvective origin of
umbral dots, light bridges and penumbral filaments.Comment: Accepted for publication in Ap
Psychiatry during the Nazi era: ethical lessons for the modern professional
For the first time in history, psychiatrists during the Nazi era sought to systematically exterminate their patients. However, little has been published from this dark period analyzing what may be learned for clinical and research psychiatry. At each stage in the murderous process lay a series of unethical and heinous practices, with many psychiatrists demonstrating a profound commitment to the atrocities, playing central, pivotal roles critical to the success of Nazi policy. Several misconceptions led to this misconduct, including allowing philosophical constructs to define clinical practice, focusing exclusively on preventative medicine, allowing political pressures to influence practice, blurring the roles of clinicians and researchers, and falsely believing that good science and good ethics always co-exist. Psychiatry during this period provides a most horrifying example of how science may be perverted by external forces. It thus becomes crucial to include the Nazi era psychiatry experience in ethics training as an example of proper practice gone awry
The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun
The dynamics of horizontal plasma flows during the first hours of the
emergence of active region magnetic flux in the solar photosphere have been
analyzed using SOHO/MDI data. Four active regions emerging near the solar limb
have been considered. It has been found that extended regions of Doppler
velocities with different signs are formed in the first hours of the magnetic
flux emergence in the horizontal velocity field. The flows observed are
directly connected with the emerging magnetic flux; they form at the beginning
of the emergence of active regions and are present for a few hours. The Doppler
velocities of flows observed increase gradually and reach their peak values
4-12 hours after the start of the magnetic flux emergence. The peak values of
the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are
800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed
substantially exceed the separation velocities of the photospheric magnetic
flux outer boundaries. The asymmetry was detected between velocity structures
of leading and following polarities. Doppler velocity structures located in a
region of leading magnetic polarity are more powerful and exist longer than
those in regions of following polarity. The Doppler velocity asymmetry between
the velocity structures of opposite sign reaches its peak values soon after the
emergence begins and then gradually drops within 7-12 hours. The peak values of
asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and
710-940 m/s, respectively. An interpretation of the observable flow of
photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented
at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102,
P.4.12,
http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
Brain Changes Associated With Long-Term Ketamine Abuse, A Systematic Review
Recently, the abuse of ketamine has soared. Therefore, it is of great importance to study its potential risks. The effects of prolonged ketamine on the brain can be observationally studied in chronic recreational users. We performed a systematic review of studies reporting functional and structural brain changes after repeated ketamine abuse. We searched the following electronic databases: Medline, Embase and PsycINFO We screened 11,438 records and 16 met inclusion criteria, totaling 440 chronic recreational ketamine users (2-9.7 years; mean use 2.4 g/day), 259 drug-free controls and 44 poly-drug controls. Long-term recreational ketamine use was associated with lower gray matter volume and less white matter integrity, lower functional thalamocortical and corticocortical connectivity. The observed differences in both structural and functional neuroanatomy between ketamine users and controls may explain some of its long-term cognitive and psychiatric side effects, such as memory impairment and executive functioning. Given the effect that long-term ketamine exposure may yield, an effort should be made to curb its abuse
Responses of the coastal bacterial community to viral infection of the algae <i>Phaeocystis globosa</i>
The release of organic material upon algal cell lyses has a key role in structuring bacterial communities and affects the cycling of biolimiting elements in the marine environment. Here we show that already before cell lysis the leakage or excretion of organic matter by infected yet intact algal cells shaped North Sea bacterial community composition and enhanced bacterial substrate assimilation. Infected algal cultures of Phaeocystis globosa grown in coastal North Sea water contained gamma-and alphaproteobacterial phylotypes that were distinct from those in the non-infected control cultures 5 h after infection. The gammaproteobacterial population at this time mainly consisted of Alteromonas sp. cells that were attached to the infected but still intact host cells. Nano-scale secondary-ion mass spectrometry (nanoSIMS) showed similar to 20% transfer of organic matter derived from the infected C-13- and N-15-labelled P. globosa cells to Alteromonas sp. cells. Subsequent, viral lysis of P. globosa resulted in the formation of aggregates that were densely colonised by bacteria. Aggregate dissolution was observed after 2 days, which we attribute to bacteriophage-induced lysis of the attached bacteria. Isotope mass spectrometry analysis showed that 40% of the particulate C-13-organic carbon from the infected P. globosa culture was remineralized to dissolved inorganic carbon after 7 days. These findings reveal a novel role of viruses in the leakage or excretion of algal biomass upon infection, which provides an additional ecological niche for specific bacterial populations and potentially redirects carbon availability
Missing lithotroph identified as new planctomycete
With the increased use of chemical fertilizers in agriculture, many densely populated countries face environmental problems associated with high ammonia emissions. The process of anaerobic ammonia oxidation ('anammox') is one of the most innovative technological advances in the removal of ammonia nitrogen from waste water. This new process combines ammonia and nitrite directly into dinitrogen gas. Until now, bacteria capable of anaerobically oxidizing ammonia had never been found and were known as "lithotrophs missing from nature". Here we report the discovery of this missing lithotroph and its identification as a new, autotrophic member of the order Planctomycetales, one of the major distinct divisions of the Bacteria. The new planctomycete grows extremely slowly, dividing only once every two weeks. At present, it cannot be cultivated by conventional microbiological techniques. The identification of this bacterium as the one responsible for anaerobic oxidation of ammonia makes an important contribution to the problem of unculturability
Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castro, S. P., Borton, M. A., Regan, K., de Angelis, I. H., Wrighton, K. C., Teske, A. P., Strous, M., & Ruff, S. E. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. Isme Journal. (2021), https://doi.org/10.1038/s41396-021-01026-5.Hydrothermal sediments contain large numbers of uncultured heterotrophic microbial lineages. Here, we amended Guaymas Basin sediments with proteins, polysaccharides, nucleic acids or lipids under different redox conditions and cultivated heterotrophic thermophiles with the genomic potential for macromolecule degradation. We reconstructed 20 metagenome-assembled genomes (MAGs) of uncultured lineages affiliating with known archaeal and bacterial phyla, including endospore-forming Bacilli and candidate phylum Marinisomatota. One Marinisomatota MAG had 35 different glycoside hydrolases often in multiple copies, seven extracellular CAZymes, six polysaccharide lyases, and multiple sugar transporters. This population has the potential to degrade a broad spectrum of polysaccharides including chitin, cellulose, pectin, alginate, chondroitin, and carrageenan. We also describe thermophiles affiliating with the genera Thermosyntropha, Thermovirga, and Kosmotoga with the capability to make a living on nucleic acids, lipids, or multiple macromolecule classes, respectively. Several populations seemed to lack extracellular enzyme machinery and thus likely scavenged oligo- or monomers (e.g., MAGs affiliating with Archaeoglobus) or metabolic products like hydrogen (e.g., MAGs affiliating with Thermodesulfobacterium or Desulforudaceae). The growth of methanogens or the production of methane was not observed in any condition, indicating that the tested macromolecules are not degraded into substrates for methanogenesis in hydrothermal sediments. We provide new insights into the niches, and genomes of microorganisms that actively degrade abundant necromass macromolecules under oxic, sulfate-reducing, and fermentative thermophilic conditions. These findings improve our understanding of the carbon flow across trophic levels and indicate how primary produced biomass sustains complex and productive ecosystems.We are grateful to the captain and crew of the R/V Atlantis AT37-06 as well as the crew of the human occupied vehicle Alvin for their tireless support. Sampling at Guaymas Basin was supported by NSF (OCE-1357238)
Magnetic Field Structures in a Facular Region Observed by THEMIS and Hinode
The main objective of this paper is to build and compare vector magnetic maps
obtained by two spectral polarimeters, i.e. THEMIS/MTR and Hinode SOT/SP, using
two inversion codes (UNNOFIT and MELANIE) based on the Milne-Eddington solar
atmosphere model. To this end, we used observations of a facular region within
active region NOAA 10996 on 23 May 2008, and found consistent results
concerning the field strength, azimuth and inclination distributions. Because
SOT/SP is free from the seeing effect and has better spatial resolution, we
were able to resolve small magnetic polarities with sizes of 1" to 2", and we
could detect strong horizontal magnetic fields, which converge or diverge in
negative or positive facular polarities. These findings support models which
suggest the existence of small vertical flux tube bundles in faculae. A new
method is proposed to get the relative formation heights of the multi-lines
observed by MTR assuming the validity of a flux tube model for the faculae. We
found that the Fe 1 6302.5 \AA line forms at a greater atmospheric height than
the Fe 1 5250.2 \AA line.Comment: 20 pages, 9 figures, 3 tables, accepted for publication in Solar
Physic
Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge
Recently discovered microorganisms affiliated to the bacterial phylum NC10, named âCandidatus Methylomirabilis oxyferaâ, perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112Â days, the enrichment consumed up to 0.4Â mM NO2â per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature
- âŠ