123 research outputs found
Optimisation of first clinical studies in special populations : towards semi-physiological pharmacokinetic models
Special populations are groups of patients that may respond differently to drug treatment due to a variety of factors, such as age or disease. Therefore, in drug development dedicated clinical studies are often required to determine the optimal dose for these (vulnerable) patient groups. Such studies are complicated by ethical and practical barriers that can hinder the objective of the study when not well designed. To optimise the design of such studies, the application of model-based approaches is essential. In this thesis, we aimed to develop a semi-physiological framework that constitutes a scientific basis for optimisation of study designs in special populations. First, we examined the accuracy of existing approaches in paediatric patients. For the "allometric scaling plus maturation function" approach, the accuracy was shown low especially in young children. An alternative approach was found in the physiological well-stirred-model of hepatic clearance. On this basis, the semi-physiological PK models were developed by interfacing descriptive compartmental pharmacokinetic models with the well-stirred-model of hepatic clearance, and a mechanistic description of plasma-protein binding. The performance of these models was evaluated using two paradigm-drugs (solifenacin and tamsulosin) and was shown successful for the prediction of the pharmacokinetics in paediatric, hepatic-impaired and renal-impaired patients.The research was performed within the framework of project number D2-104 of the Dutch Top Institute PharmaUBL - phd migration 201
First dose in children: physiological insights into pharmacokinetic scaling approaches and their implications in paediatric drug development
Dose selection for “first in children” trials often relies on scaling of the pharmacokinetics from adults to children. Commonly used approaches are physiologically-based pharmacokinetic modeling (PBPK) and allometric scaling (AS) in combination with maturation of clearance for early life. In this investigation, a comparison of the two approaches was performed to provide insight into the physiological meaning of AS maturation functions and their interchangeability. The analysis focused on the AS maturation functions established using paracetamol and morphine paediatric data after intravenous administration. First, the estimated AS maturation functions were compared with the maturation functions of the liver enzymes as used in the PBPK models. Second, absolute clearance predictions using AS in combination with maturation functions were compared to PBPK predictions for hypothetical drugs with different pharmacokinetic properties. The results of this investigation showed that AS maturation functions do not solely represent ontogeny of enzyme activity, but aggregate multiple pharmacokinetic properties, as for example extraction ratio and lipophilicity (log P). Especially in children younger than 1 year, predictions using AS in combination with maturation functions and PBPK were not interchangeable. This highlights the necessity of investigating methodological uncertainty to allow a proper estimation of the “first dose in children” and assessment of its risk and benefits
Involvement of the endocannabinoid system in reward processing in the human brain
Rationale Disturbed reward processing in humans has been associated with a number of disorders, such as depression, addiction, and attention-deficit hyperactivity disorder. The endocannabinoid (eCB) system has been implicated in reward processing in animals, but in humans, the relation between eCB functioning and reward is less clear. Objectives The current study uses functional magnetic resonance imaging (fMRI) to investigate the role of the eCB system in reward processing in humans by examining the effect of the eCB agonist Δ9-tetrahydrocannabinol (THC) on reward-related brain activity. Methods Eleven healthy males participated in a randomized placebo-controlled pharmacological fMRI study with administration of THC to challenge the eCB system. We compared anticipatory and feedback-related brain activity after placebo and THC, using a monetary incentive delay task. In this task, subjects are notified before each trial whether a correct response is rewarded (“reward trial”) or not (“neutral trial”). Results Subjects showed faster reaction times during reward trials compared to neutral trials, and this effect was not altered by THC. THC induced a widespread attenuation of the brain response to feedback in reward trials but not in neutral trials. Anticipatory brain activity was not affected. Conclusions These results suggest a role for the eCB system in the appreciation of rewards. The involvement of the eCB system in feedback processing may be relevant for disorders in which appreciation of natural rewards may be affected such as addiction
Acute effects of MDMA (3,4-methylenedioxymethamphetamine) on EEG oscillations: alone and in combination with ethanol or THC (delta-9-tetrahydrocannabinol)
Item does not contain fulltextRATIONALE: Typical users of 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") are polydrug users, combining MDMA with alcohol or cannabis [most active compound: delta-9-tetrahydrocannabinol (THC)]. OBJECTIVES: The aim of the present study was to investigate whether co-administration of alcohol or THC with MDMA differentially affects ongoing electroencephalogram (EEG) oscillations compared to the administration of each drug alone. METHODS: In two separate experiments, 16 volunteers received four different drug conditions: (1) MDMA (100 mg); (2) alcohol clamp (blood alcohol concentration = 0.6 per thousand) or THC (inhalation of 4, 6 and 6 mg, interval of 1.5 h); (3) MDMA in combination with alcohol or THC; and (4) placebo. Before and after drug administration, electroencephalography was recorded during an eyes closed resting state. RESULTS: Theta and alpha power increased after alcohol intake compared to placebo and reduced after MDMA intake. No interaction between alcohol and MDMA was found. Significant MDMA x THC effects for theta and lower-1-alpha power indicated that the power attenuation after the combined intake of MDMA and THC was less than the sum of each drug alone. For the lower-2-alpha band, the intake of MDMA or THC alone did not significantly affect power, but the intake of combined MDMA and THC significantly decreased lower-2-alpha power. CONCLUSIONS: The present findings indicate that the combined intake of MDMA and THC, but not of MDMA and alcohol, affects ongoing EEG oscillations differently than the sum of either one drug alone. Changes in ongoing EEG oscillations may be related to the impaired task performance that has often been reported after drug intake
- …