354 research outputs found

    Transport and Boundary Scattering in Confined Geometries: Analytical Results

    Full text link
    We utilize a geometric argument to determine the effects of boundary scattering on the carrier mean-free path in samples of various cross sections. Analytic expressions for samples with rectangular and circular cross sections are obtained. We also outline a method for incorporating these results into calculations of the thermal conductivity.Comment: 35 pages, Late

    Universality of Quantum Gravity Corrections

    Get PDF
    We show that the existence of a minimum measurable length and the related Generalized Uncertainty Principle (GUP), predicted by theories of Quantum Gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb Shift, the Landau levels and the tunnelling current in a Scanning Tunnelling Microscope (STM). We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale, between the electroweak and the Planck scale.Comment: v1: 4 pages, LaTeX; v2: typos corrected, references updated, version to match published version in Physical Review Letter

    Quantum theory of intersubband polarons

    Get PDF
    We present a microscopic quantum theory of intersubband polarons, quasiparticles originated from the coupling between intersubband transitions and longitudinal optical phonons. To this aim we develop a second quantized theory taking into account both the Fr\"ohlich interaction between phonons and intersubband transitions and the Coulomb interaction between the intersubband transitions themselves. Our results show that the coupling between the phonons and the intersubband transitions is extremely intense, thanks both to the collective nature of the intersubband excitations and to the natural tight confinement of optical phonons. Not only the coupling is strong enough to spectroscopically resolve the resonant splitting between the modes (strong coupling regime), but it can become comparable to the bare frequency of the excitations (ultrastrong coupling regime). We thus predict the possibility to exploit intersubband polarons both for applied optoelectronic research, where a precise control of the phonon resonances is needed, and also to observe fundamental quantum vacuum physics, typical of the ultrastrong coupling regime

    A proposal for testing Quantum Gravity in the lab

    Full text link
    Attempts to formulate a quantum theory of gravitation are collectively known as {\it quantum gravity}. Various approaches to quantum gravity such as string theory and loop quantum gravity, as well as black hole physics and doubly special relativity theories predict a minimum measurable length, or a maximum observable momentum, and related modifications of the Heisenberg Uncertainty Principle to a so-called generalized uncertainty principle (GUP). We have proposed a GUP consistent with string theory, black hole physics and doubly special relativity theories and have showed that this modifies all quantum mechanical Hamiltonians. When applied to an elementary particle, it suggests that the space that confines it must be quantized, and in fact that all measurable lengths are quantized in units of a fundamental length (which can be the Planck length). On the one hand, this may signal the breakdown of the spacetime continuum picture near that scale, and on the other hand, it can predict an upper bound on the quantum gravity parameter in the GUP, from current observations. Furthermore, such fundamental discreteness of space may have observable consequences at length scales much larger than the Planck scale. Because this influences all the quantum Hamiltonians in an universal way, it predicts quantum gravity corrections to various quantum phenomena. Therefore, in the present work we compute these corrections to the Lamb shift, simple harmonic oscillator, Landau levels, and the tunneling current in a scanning tunneling microscope.Comment: v1: 10 pages, REVTeX 4, no figures; v2: minor typos corrected and a reference added. arXiv admin note: has substantial overlap with arXiv:0906.5396 , published in a different journa

    The Density of States of hole-doped Manganites: A Scanning Tunneling Microscopy/Spectroscopy study

    Get PDF
    Variable temperature scanning tunneling microscopy/spectroscopy studies on single crystals and epitaxial thin films of hole-doped manganites, which show colossal magnetoresistance, have been done. We have investigated the variation of the density of states, at and near the Fermi energy (EfE_f), as a function of temperature. Simple calculations have been carried out, to find out the effect of temperature on the tunneling spectra and extract the variation of density of states with temperature, from the observed data. We also report here, atomic resolution images, on the single crystals and larger range images showing the growth patterns on thin films. Our investigation shows unambiguously that there is a rapid variation in density of states for temperatures near the Curie temperature (TcT_c). While for temperatures below TcT_c, a finite DOS is observed at EfE_f, for temperatures near TcT_c a hard gap opens up in the density of states near EfE_f. For temperatures much higher than TcT_c, this gap most likely gives way to a soft gap. The observed hard gap for temperatures near TcT_c, is somewhat higher than the transport gap for all the materials. For different materials, we find that the magnitude of the hard gap decreases as the TcT_c of the material increases and eventually, for materials with a TcT_c close to 400 K, the value of the gap approaches zero.Comment: 9 pages RevTeX, 12 postscript figures, 1 table included in text, submitted to Physical Review

    Variational Derivation of Relativistic Fermion-Antifermion Wave Equations in QED

    Full text link
    We present a variational method for deriving relativistic two-fermion wave equations in a Hamiltonian formulation of QED. A reformulation of QED is performed, in which covariant Green functions are used to solve for the electromagnetic field in terms of the fermion fields. The resulting modified Hamiltonian contains the photon propagator directly. The reformulation permits one to use a simple Fock-space variational trial state to derive relativistic fermion-antifermion wave equations from the corresponding quantum field theory. We verify that the energy eigenvalues obtained from the wave equation agree with known results for positronium.Comment: 25 pages, accepted in Journal of Mathematical Physics (2004

    Temporal stimulated intersubband emission of photoexcited electrons

    Full text link
    We have studied the transient evolution of electrons distributed over two levels in a wide quantum well, with the two levels below the optical phonon energy, after an ultrafast interband excitation and cascade emission of optical phonons. If electrons are distributed near the top of the passive region, a temporal negative absorption appears to be dominant in the intersubband response. This is due to the effective broadening of the upper level state under the optical phonon emission. We have then considered the amplification of the ground mode in a THz waveguide with a multiquantum well placed at the center of the cavity. A huge increase of the probe signal is obtained, which permits the temporal stimulated emission regime of the photoexcited electrons in the THz spectral region.Comment: 5 pages, 5 figures, brief repor

    The process of irreversible nucleation in multilayer growth. I. Failure of the mean-field approach

    Full text link
    The formation of stable dimers on top of terraces during epitaxial growth is investigated in detail. In this paper we focus on mean-field theory, the standard approach to study nucleation. Such theory is shown to be unsuitable for the present problem, because it is equivalent to considering adatoms as independent diffusing particles. This leads to an overestimate of the correct nucleation rate by a factor N, which has a direct physical meaning: in average, a visited lattice site is visited N times by a diffusing adatom. The dependence of N on the size of the terrace and on the strength of step-edge barriers is derived from well known results for random walks. The spatial distribution of nucleation events is shown to be different from the mean-field prediction, for the same physical reason. In the following paper we develop an exact treatment of the problem.Comment: 19 pages, 3 figures. To appear in Phys. Rev.

    Epitaxial growth of Cu on Cu(001): experiments and simulations

    Full text link
    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semi-empirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well.Comment: Latex document. 7 pages. 3 embedded figures in separate PS files. One bbl fil

    Role of confined phonons in thin film superconductivity

    Full text link
    We calculate the critical temperature TcT_c and the superconducting energy gaps Δn\Delta_n of a thin film superconductor system, where Δn\Delta_n is the superconducting energy gap of the nn-th subband. Since the quantization of both the electron energy and phonon spectrum arises due to dimensional confinement in one direction, the effective electron-electron interaction mediated by the quantized confined phonons is different from that mediated by the bulk phonon, leading to the modification of TcT_c in the thin film system. We investigate the dependence of TcT_c and Δn\Delta_n on the film thickness dd with this modified interaction.Comment: 4 pages, 2 figure
    • …
    corecore