279 research outputs found
Role of confined phonons in thin film superconductivity
We calculate the critical temperature and the superconducting energy
gaps of a thin film superconductor system, where is the
superconducting energy gap of the -th subband. Since the quantization of
both the electron energy and phonon spectrum arises due to dimensional
confinement in one direction, the effective electron-electron interaction
mediated by the quantized confined phonons is different from that mediated by
the bulk phonon, leading to the modification of in the thin film system.
We investigate the dependence of and on the film thickness
with this modified interaction.Comment: 4 pages, 2 figure
Extracting the electron--boson spectral function F() from infrared and photoemission data using inverse theory
We present a new method of extracting electron-boson spectral function
F() from infrared and photoemission data. This procedure is
based on inverse theory and will be shown to be superior to previous
techniques. Numerical implementation of the algorithm is presented in detail
and then used to accurately determine the doping and temperature dependence of
the spectral function in several families of high-T superconductors.
Principal limitations of extracting F() from experimental
data will be pointed out. We directly compare the IR and ARPES
F() and discuss the resonance structure in the spectra in
terms of existing theoretical models
Scaling of the superfluid density in high-temperature superconductors
A scaling relation \rho_s \simeq 35\sigma_{dc}T_c has been observed in the
copper-oxide superconductors, where \rho_s is the strength of the
superconducting condensate, T_c is the critical temperature, and \sigma_{dc} is
the normal-state dc conductivity close to T_c. This scaling relation is
examined within the context of a clean and dirty-limit BCS superconductor.
These limits are well established for an isotropic BCS gap 2\Delta and a
normal-state scattering rate 1/\tau; in the clean limit 1/\tau \ll 2\Delta, and
in the dirty limit 1/\tau > 2\Delta. The dirty limit may also be defined
operationally as the regime where \rho_s varies with 1/\tau. It is shown that
the scaling relation \rho_s \propto \sigma_{dc}T_c is the hallmark of a BCS
system in the dirty-limit. While the gap in the copper-oxide superconductors is
considered to be d-wave with nodes and a gap maximum \Delta_0, if 1/\tau >
2\Delta_0 then the dirty-limit case is preserved. The scaling relation implies
that the copper-oxide superconductors are likely to be in the dirty limit, and
that as a result the energy scale associated with the formation of the
condensate is scaling linearly with T_c. The a-b planes and the c axis also
follow the same scaling relation. It is observed that the scaling behavior for
the dirty limit and the Josephson effect (assuming a BCS formalism) are
essentially identical, suggesting that in some regime these two effects may be
viewed as equivalent. This raises the possibility that electronic
inhomogeneities in the copper-oxygen planes may play an important role in the
nature of the superconductivity in the copper-oxide materials.Comment: 8 pages with 5 figures and 1 tabl
Infrared Studies of the Onset of Conductivity in Ultra-Thin Pb Films
In this paper we report the first experimental measurement of the infrared
conductivity of ultra-thin quenched-condensed Pb films. For dc sheet
resistances such that the ac conductance increases with
frequency but is in disagreement with the predictions of weak localization. We
attribute this behavior to the effects of an inhomogeneous granular structure
of these films, which is manifested at the very small probing scale of infrared
measurements. Our data are consistent with predictions of two-dimensional
percolation theory.Comment: Submitted to Physical Review Letter
Absence of a Zero Temperature Vortex Solid Phase in Strongly Disordered Superconducting Bi Films
We present low temperature measurements of the resistance in magnetic field
of superconducting ultrathin amorphous Bi films with normal state sheet
resistances, , near the resistance quantum, . For
, the tails of the resistive transitions show the thermally activated
flux flow signature characteristic of defect motion in a vortex solid with a
finite correlation length. When exceeds , the tails become
non-activated. We conclude that in films where there is no vortex
solid and, hence, no zero resistance state in magnetic field. We describe how
disorder induced quantum and/or mesoscopic fluctuations can eliminate the
vortex solid and also discuss implications for the magnetic-field-tuned
superconductor-insulator transition.Comment: REVTEX, 4 pages, 3 figure
Phenomenological Determination of the Beauty Meson Decay Parameter and the CP-Violating Angle
We fit the -matrix to all recent data with the following free
parameters: three mixing angles, the CP-violating angle in the Maiani
parametrisation, the top quark mass , and the product f_B{\cal
B}_{\B}^{1/2}, where is the -meson decay parameter and {\cal
B}_{\B} is the bag parameter. Our fits span a contiguous region in the
(f_B{\cal B}_{\B}^{1/2},\ \cos\delta)--plane, limited by 0.117\lsim f_B{\cal
B}_{\B}^{1/2}/{\rm GeV}\lsim 0.231 and --0.95 \lsim \lsim
0.70. The parameters f_B{\cal B}_{\B}^{1/2} and are strongly
positively correlated.Comment: 9 pages + 1 figure available upon request, HU-TFT-94-3
Effect of granularity on the insulator-superconductor transition in ultrathin Bi films
We have studied the insulator-superconductor transition (IST) by tuning the
thickness in quench-condensed films. The resistive transitions of the
superconducting films are smooth and can be considered to represent
"homogeneous" films. The observation of an IST very close to the quantum
resistance for pairs, on several substrates supports
this idea. The relevant length scales here are the localization length, and the
coherence length. However, at the transition, the localization length is much
higher than the superconducting coherence length, contrary to expectation for a
"homogeneous" transition. This suggests the invalidity of a purely fermionic
model for the transition. Furthermore, the current-voltage characteristics of
the superconducting films are hysteretic, and show the films to be granular.
The relevant energy scales here are the Josephson coupling energy and the
charging energy. However, Josephson coupling energies () and the charging
energies () at the IST, they are found to obey the relation .
This is again contrary to expectation, for the IST in a granular or
inhomogeneous, system. Hence, a purely bosonic picture of the transition is
also inconsistent with our observations. We conclude that the IST observed in
our experiments may be either an intermediate case between the fermioinc and
bosonic mechanisms, or in a regime of charge and vortex dynamics for which a
quantitative analysis has not yet been done.Comment: accepted in Physical Review
- …