1,768 research outputs found

    Statistical Hair on Black Holes

    Get PDF
    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory.Comment: 11 pages, harvmac, minor addition

    Putting an Edge to the Poisson Bracket

    Get PDF
    We consider a general formalism for treating a Hamiltonian (canonical) field theory with a spatial boundary. In this formalism essentially all functionals are differentiable from the very beginning and hence no improvement terms are needed. We introduce a new Poisson bracket which differs from the usual ``bulk'' Poisson bracket with a boundary term and show that the Jacobi identity is satisfied. The result is geometrized on an abstract world volume manifold. The method is suitable for studying systems with a spatial edge like the ones often considered in Chern-Simons theory and General Relativity. Finally, we discuss how the boundary terms may be related to the time ordering when quantizing.Comment: 36 pages, LaTeX. v2: A manifest formulation of the Poisson bracket and some examples are added, corrected a claim in Appendix C, added an Appendix F and a reference. v3: Some comments and references adde

    Dual Brane Pairs, Chains and the Bekenstein-Hawking Entropy

    Full text link
    A proposal towards a microscopic understanding of the Bekenstein-Hawking entropy for D=4 spacetimes with event horizon is made. Since we will not rely on supersymmetry these spacetimes need not be supersymmetric. Euclidean D-branes which wrap the event horizon's boundary will play an important role. After arguing for a discretization of the Euclidean D-brane worldvolume based on the worldvolume uncertainty relation, we count chainlike excitations on the worldvolume of specific dual Euclidean brane pairs. Without the need for supersymmetry it is shown that one can thus reproduce the D=4 Bekenstein-Hawking entropy and its logarithmic correction.Comment: 14 pages, 1 figur

    Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions

    Full text link
    The symmetry algebra of asymptotically flat spacetimes at null infinity in three dimensions is the semi-direct sum of the infinitesimal diffeomorphisms on the circle with an abelian ideal of supertranslations. The associated charge algebra is shown to admit a non trivial classical central extension of Virasoro type closely related to that of the anti-de Sitter case.Comment: 4 sign mistakes due to a change of conventions are corrected in section 2, none of the conclusions are affected, takes precedence over published version, including corrigendu

    Spinor two-point functions and Peierls bracket in de Sitter space

    Full text link
    This paper studies spinor two-point functions for spin-1/2 and spin-3/2 fields in maximally symmetric spaces such as de Sitter spacetime, by using intrinsic geometric objects. The Feynman, positive- and negative-frequency Green functions are then obtained for these cases, from which we eventually display the supercommutator and the Peierls bracket under such a setting in two-component-spinor language.Comment: 22 pages, Latex. In the final version, the presentation has been improve

    Rudiments of Holography

    Full text link
    An elementary introduction to Maldacena's AdS/CFT correspondence is given, with some emphasis in the Fefferman-Graham construction. This is based on lectures given by one of us (E.A.) at the Universidad Autonoma de Madrid.Comment: 60 pages, additional misprints corrected, references adde

    What We Don't Know about BTZ Black Hole Entropy

    Get PDF
    With the recent discovery that many aspects of black hole thermodynamics can be effectively reduced to problems in three spacetime dimensions, it has become increasingly important to understand the ``statistical mechanics'' of the (2+1)-dimensional black hole of Banados, Teitelboim, and Zanelli (BTZ). Several conformal field theoretic derivations of the BTZ entropy exist, but none is completely satisfactory, and many questions remain open: there is no consensus as to what fields provide the relevant degrees of freedom or where these excitations live. In this paper, I review some of the unresolved problems and suggest avenues for their solution.Comment: 24 pages, LaTeX, no figures; references added, brief discussion of relation to string theory added; to appear in Class. Quant. Gra
    • 

    corecore