6 research outputs found
Classical nuclear motion: Does it fail to explain reactions and spectra in certain cases?
Is a classical description of nuclear motion sufficient when describing chemical reactions and spectra? This question is interesting because many researchers use a classical description of nuclear motion in molecular dynamics simulations. The present paper investigates some phenomena that were previously attributed to nuclear quantum effects. The question is if these phenomena can be modeled with traditional Car–Parrinello molecular dynamics, that is, with a method which treats nuclear motion classically and which is widely applied to the simulation of chemical reactions and spectra. We find that for the investigated system no additional paradigm is needed for describing chemical reactions. The special reactivity observed for carbenes can be attributed to the special environment represented by a noble gas matrix and to an additional transition state that was not considered before. Also the infrared spectrum of porphycene is perfectly modeled by traditional Car–Parrinello molecular dynamics. More studies are necessary to decide to what extent classical nuclear motion can replace the quantum mechanical description
Electronic Structure of Colloidal 2H-MoS2 Mono and Bilayers Determined by Spectroelectrochemistry
The electronic structure of mono and bilayers of colloidal 2H-MoS2 nanosheets synthesized by wet-chemistry using potential-modulated absorption spectroscopy (EMAS), differential pulse voltammetry, and electrochemical gating measurements is investigated. The energetic positions of the conduction and valence band edges of the direct and indirect bandgap are reported and observe strong bandgap renormalization effects, charge screening of the exciton, as well as intrinsic n-doping of the as-synthesized material. Two distinct transitions in the spectral regime associated with the C exciton are found, which overlap into a broad signal upon filling the conduction band. In contrast to oxidation, the reduction of the nanosheets is largely reversible, enabling potential applications for reductive electrocatalysis. This work demonstrates that EMAS is a highly sensitive tool for determining the electronic structure of thin films with a few nanometer thicknesses and that colloidal chemistry affords high-quality transition metal dichalcogenide nanosheets with an electronic structure comparable to that of exfoliated samples
Electronic structure of colloidal 2H-MoS2 mono- and bilayers determined by spectroelectrochemistry
We investigate the electronic structure of mono- and bilayers of colloidal 2H-MoS2 nanosheets synthesized by wet-chemistry using potential-modulated absorption spectroscopy (EMAS), differential pulse voltammetry (DPV) and electrochemical gating (ECG) measurements. We report the energetic positions of the conduction and valence band edges of the direct and indirect bandgap and observe strong bandgap renormalization effects, charge screening of the exciton as well as intrinsic n-doping of the as-synthesized material. We find two distinct transitions in the spectral regime associated with the C exciton, which overlap into a broad signal upon filling the conduction band. In contrast to the oxidation, the reduction of the nanosheets is largely reversible, enabling potential applications for reductive electrocatalysis. This work demonstrates that EMAS is a highly sensitive tool for determining the electronic structure of thin films with few nanometer thickness and that colloidal chemistry affords high-quality transition metal dichalcogenide nanosheets with an electronic structure comparable to that of exfoliated samples
Untangling the Intertwined: Metallic to Semiconducting Phase Transition of Colloidal MoS2 Nanoplatelets and Nanosheets
2D semiconducting transition metal dichalcogenides (TMDCs) are highly promising materials for future spin- and valleytronic applications and exhibit an ultrafast response to external (optical) stimuli which is essential for optoelectronics. Colloidal nanochemistry on the other hand is an emerging alternative for the synthesis of 2D TMDC nanosheet (NS) ensembles, allowing for the control of the reaction via tunable precursor and ligand chemistry. Up to now, wet-chemical colloidal syntheses yielded intertwined/agglomerated NSs with a large lateral size. Here, we show a synthesis method for 2D mono- and bilayer MoS2 nanoplatelets with a particularly small lateral size (NPLs, 7.4 nm ± 2.2 nm) and MoS2 NSs (22 nm ± 9 nm) as a reference by adjusting the molybdenum precursor concentration in the reaction. We find that in colloidal 2D MoS2 syntheses initially a mixture of the stable semiconducting and the metastable metallic crystal phase is formed. 2D MoS2 NPLs and NSs then both undergo a full transformation to the semiconducting crystal phase by the end of the reaction, which we quantify by X-ray photoelectron spectroscopy. Phase pure semiconducting MoS2 NPLs with a lateral size approaching the MoS2 exciton Bohr radius exhibit strong additional lateral confinement, leading to a drastically shortened decay of the B exciton which is characterized by ultrafast transient absorption spectroscopy. Our findings represent an important step for utilizing colloidal TMDCs, for example small MoS2 NPLs represent an excellent starting point for the growth of heterostructures for future colloidal photonics