797 research outputs found

    Frequency splitting in undulator radiation from solid-state crystalline undulator

    Full text link
    The set of frequencies and angular properties of radiation emitted from a solid-state crystalline undulator based on the channeling effect are considered. High-frequency and low-frequency branches of the undulator radiation and the angular distribution of the emitted radiation are analyzed. The ranges of frequencies and angles of radiation emitted from the solid-state crystalline undulator based on the channeling effect are found. The frequency splitting and the energy threshold in the production of undulator radiation are shown and discussed.Comment: 11 pages, 2 figure

    A proof-of-concept neural network for inferring parameters of a black hole from partial interferometric images of its shadow

    Full text link
    We test the possibility of using a convolutional neural network to infer the inclination angle of a black hole directly from the incomplete image of the black hole's shadow in the uvuv-plane. To this end, we develop a proof-of-concept network and use it to explicitly find how the error depends on the degree of coverage, type of input and coverage pattern. We arrive at a typical error of 10∘10^\circ at a level of absolute coverage 1%1\% (for a pattern covering a central part of the uvuv-plane), 0.3%0.3\% (pattern covering the central part and the periphery, the 0.3%0.3\% referring to the central part only), and 14%14\% (uniform pattern). These numbers refer to a network that takes both amplitude and phase of the visibility function as inputs. We find that this type of network works best in terms of the error itself and its distribution for different angles. In addition, the same type of network demonstrates similarly good performance on highly blurred images mimicking sources nearing being unresolved. In terms of coverage, the magnitude of the error does not change much as one goes from the central pattern to the uniform one. We argue that this may be due to the presence of a typical scale which can be mostly learned by the network from the central part alone.Comment: 12 pages, 10 figures. For the code and trained models, see https://bitbucket.org/cosmoVlad/neuro-rep

    Radiation from relativistic electrons in "light" and in conventional undulators. Classical and quantum approaches

    Get PDF
    A photon spectrum of undulator radiation (UR) is calculated in the semi-classical approach. The UR intensity spectrum is determined by an electron trajectory in the undulator neglecting by energy losses for radiation. Using the Planck's law, the UR photon spectrum can be calculated from the classical intensity spectrum both for linear and nonlinear regimes. The radiation of an electron in a field of strong electromagnetic wave (radiation in the "light" undulator) is considered in the quantum electromagnetic frame. Comparison of results obtained by both approaches has been shown that UR spectra in the whole cone coincide with high accuracy for the case x<<1. Characteristics of the collimated UR beam were simulated with taking into account the discrete process of photon emission along an electron trajectory in both kinds of undulators

    ΠŸΠžΠšΠΠ—ΠΠ’Π•Π›Π¬ ΠžΠ’ΠΠžΠ‘Π˜Π’Π•Π›Π¬ΠΠžΠ“Πž ΠžΠ‘ΠͺΠ•ΠœΠ ΠšΠ ΠžΠ’Π˜ КАК Π‘Π Π•Π”Π‘Π’Π’Πž ΠŸΠ ΠžΠ€Π˜Π›ΠΠšΠ’Π˜ΠšΠ˜ ΠΠ Π’Π•Π Π˜ΠΠ›Π¬ΠΠžΠ™ Π“Π˜ΠŸΠžΠ’Π•ΠΠ—Π˜Π˜ Π’ Π₯ΠžΠ”Π• Π“Π•ΠœΠžΠ”Π˜ΠΠ›Π˜Π—Π

    Get PDF
    Intravascular volume preservation is the first choice measure for the prevention of intradialysis hypotension. At present there are devices that allow continuous monitoring of relative blood volume (RBV) changes during haemodialysis (HD). The aim of this research was to investigate (i) the regularity of RBV curve during haemo- dialysis and (ii) the efficacy of some measures for intravascular volume preservation. In patients with hyperhydration RBV curves were monotone; in all cases relation RBV/ ultrafiltration volume (UF) did not exceed 2,5%/L. In stable patients the RBV curve was immutable in the course of years. Patients with high RBV/UF ratio (&gt;6%/L) formed a high risk group. In these patients stability of RBV was more im- portant and more useful. Isolated UF did not decrease RBV drop, as well as haemodiafiltration online. Albumin administration allows to decrease RBV/UF ratio. After bolus of hypertonic dextrose solution RBV increased for about half of hour. In patients with acute renal injury RBV monitoring was far from reliability in many cases. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ закономСрностСй измСнСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ объСма ΠΊΡ€ΠΎΠ²ΠΈ (ООК) Π² Ρ…ΠΎΠ΄Π΅ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π° ΠΈ дСйствСнности Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… мСроприятий, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Π²Π½Ρƒ- трисосудистого объСма. ΠžΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ООК Π² Ρ…ΠΎΠ΄Π΅ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π° явилось дСйствСнной ΠΌΠ΅Ρ€ΠΎΠΉ ΠΊΠ°ΠΊ для ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈΠ½Ρ‚Ρ€Π°Π΄ΠΈΠ°- Π»ΠΈΠ·Π½ΠΎΠΉ Π³ΠΈΠΏΠΎΡ‚Π΅Π½Π·ΠΈΠΈ, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ «сухого вСса». Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΊΡ€ΠΈΠ²ΠΎΠΉ ООК Ρƒ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π° ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π΅ остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π»Π΅Ρ‚. ВысокоС (Π±ΠΎΠ»Π΅Π΅ 6% Π½Π° 1 Π»ΠΈΡ‚Ρ€) ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ максимального сниТСния ООК ΠΊ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (ООК/Π£Π€) ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π³Ρ€ΡƒΠΏΠΏΡƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±Π΅Π΄Π½Π΅Π½ΠΈΠ΅ внутрисосудистого объСма являСтся основным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Ρ€Π°Π·- вития Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠΎΡ‚Π΅Π½Π·ΠΈΠΈ Π² Ρ…ΠΎΠ΄Π΅ сСансов лСчСния. Π˜Π·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Π°Ρ ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΈ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°- Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ on line Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ восполнСниС внутрисосудистого объСма. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ раство- Ρ€Π° Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½Π° позволяло ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Ρ‚Π΅ΠΌΠΏ сниТСния ООК, Π° болюсноС Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ гипСртоничСского раствора Π³Π»ΡŽΠΊΠΎΠ·Ρ‹ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π»ΠΎ ООК Π½Π° срок ΠΎΠΊΠΎΠ»ΠΎ получаса. Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с острым ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡ‡Π΅ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ ООК Π½Π΅ всСгда оказывался достовСрным.

    Problems of Agricultural Policy Adaptation Within Sustainable Development Goals

    Get PDF
    The paper reveals problems of integrating national policy for increasing agricultural production and ecological consequences, including the important aspect of Russia’s ratification of the Paris Agreement on climate, which provides additional opportunities for a decrease in carbon emissions. Current government programs for agricultural development in Russia, which include but are not limited to production growth and increase in agricultural exports, do not take into account the ecological consequences of such growth. The paper analyzes how the agriculture of Russia has evolved in the recent period (2007-2017) and what amount of greenhouse gas (GHG) emissions it has caused. Although in general emissions exhibited a decreasing trend, it was found that ploughing additional land for crop production had caused a large outburst of emissions from a small amount of land. Using the GLOBIOM partial equilibrium model, two scenarios of Russia's agricultural development until 2030 were formulated. The first one is intensive, with only a small amount of crop area growth but with a 45% increase in yields compared to current levels. The second scenario is an extensive one, with crop area growth of additional 6.4 million hectares and a total yield increase of 24% compared to current levels. Results have shown that crop and meat production increase in both scenarios, but the extensive one involves more emissions from additional ploughed land. To stop these kinds of practices, the recommendations would be to limit the ploughing of additional land and to improve statistical bookkeeping for a more accurate inclusion of land use and respective GHG emissions

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ ΠΊΠΎΠ½Π²Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ

    Get PDF
    Objective: to evaluate the dependence of the magnitude of convection flow in online hemodiafiltration (OLHDF) on ultrafiltration control method and patients’ individual characteristics. Materials and methods. The study included 36 stable dialysis patients (20 male and 16 female). The substitution rate was conducted manually based on transmembrane pressure (TMP). In some cases, devices with automatic filtration rate control unit AutoSub plus were used. The filtration rate (FR), TMP, blood flow rate (Qb), specific filtration rate (SFR, m/l/min/mm Hg–1 ) were recorded. Results. The maximum SFR in various patients ranged from 0.51 to 0.80 ml/min/mm Hg–1 ; average value was 0.62 Β± 0.07 ml/min/mm Hg–1 . There was significant correlation of SFR with hemoglobin level (r = –0.55). SFR reduced during hemodiafiltration (on average – by 23 Β± 4%). SFR was significantly affected by Qb (r = 0.70). Maximum SFR was achieved with a TMP of 140–220 mm Hg; with TMP over 250 mm Hg, a decrease in SFR was noted, an increase in Qb was required for further increase in FR. Individual stability of SFR was noted during serial observations; fluctuations in a particular patient did not exceed 10%. Substitution volume for the HDF session was 18.0 Β± 3.3 L, the FR/Qb ratio was 24.7 Β± 5.2%. Substitution volume of 21 L was not achieved in 17 of 36 patients. The use of automatic FR adjustment system made it possible to increase the substitution volume (SV) by 12–18%. Conclusion. Achieving maximum convection volume in OLHDF requires individualizing treatment parameters. The use of FR automatic control allows maximum possible convection flow.ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΊΠΎΠ½Π²Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (ΠΎΠ»Π“Π”Π€) ΠΎΡ‚ способа управлСния ΡƒΠ»ΡŒΡ‚Ρ€Π°Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠ΅ΠΉ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдованиС Π±Ρ‹Π»ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 36 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (20 ΠΌΡƒΠΆΡ‡ΠΈΠ½ ΠΈ 16 ΠΆΠ΅Π½Ρ‰ΠΈΠ½), находящихся Π½Π° Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΌ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·ΠΎΠΌ. Π£ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ замСщСния ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π² Ρ€ΡƒΡ‡Π½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π½Π° основании ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ трансмСмбранного давлСния (Π’ΠœΠ”). Π’ рядС случаСв использовались Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Ρ‹ с Π±Π»ΠΎΠΊΠΎΠΌ автоматичСского управлСния ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (Π‘Π€) AutoSub plus. Π€ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π‘Π€, Π’ΠœΠ”, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ° (БК), ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ (Π£Π‘Π€, ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ Ρ€Ρ‚. ст.–1 ). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Максимальная Π£Π‘Π€ Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² колСбалась Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… 0,51–0,80 ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ Ρ€Ρ‚. ст.–1 , срСднСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ составило 0,62 Β± 0,07 ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ Ρ€Ρ‚. ст.–1 . Π‘Ρ‹Π»Π° ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° значимая коррСляция Π£Π‘Π€ с ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° (r = –0,55). Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ сниТСниС Π£Π‘Π€ (Π² срСднСм – Π½Π° 23 Β± 4%). На Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Π£Π‘Π€ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»Π° сущСствСнноС влияниС БК (r = 0,70). Максимальная Π£Π‘Π€ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Π»Π°ΡΡŒ ΠΏΡ€ΠΈ Π’ΠœΠ” 140–220 ΠΌΠΌ Ρ€Ρ‚. ст., ΠΏΡ€ΠΈ Π’ΠœΠ” ΡΠ²Ρ‹ΡˆΠ΅ 250 ΠΌΠΌ Ρ€Ρ‚. ст. ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π£Π‘Π€, ΠΈ для дальнСйшСго прироста Π‘Π€ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ скорости ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊΠ°. ΠŸΡ€ΠΈ сСрийных Π½Π°Π±Π»ΡŽΠ΄Π΅Π½ΠΈΡΡ… Π±Ρ‹Π»Π° ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Π°Ρ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π£Π‘Π€, колСбания Ρƒ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π»ΠΈ 10%. ОбъСм замСщСния Π·Π° сСанс Π“Π”Π€ составил 18,0 Β± 3,3 Π», ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π‘Π€/БК 24,7 Β± 5,2%, ΠΏΡ€ΠΈ этом Ρƒ 17 ΠΈΠ· 36 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π΅ Π±Ρ‹Π» достигнут объСм замСщСния 21 Π». ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ автоматичСской систСмы Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ Π‘Π€ позволяло ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ объСм замСщСния (ΠžΠ—) Π½Π° 12–18%. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ДостиТСниС максимального ΠΊΠΎΠ½Π²Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ объСма ΠΏΡ€ΠΈ ΠΎΠ»Π“Π”Π€ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² лСчСния. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ автоматичСского управлСния Π‘Π€ позволяСт ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ максимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ ΠΊΠΎΠ½Π²Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΏΠΎΡ‚ΠΎΠΊ
    • …
    corecore