797 research outputs found
Frequency splitting in undulator radiation from solid-state crystalline undulator
The set of frequencies and angular properties of radiation emitted from a
solid-state crystalline undulator based on the channeling effect are
considered. High-frequency and low-frequency branches of the undulator
radiation and the angular distribution of the emitted radiation are analyzed.
The ranges of frequencies and angles of radiation emitted from the solid-state
crystalline undulator based on the channeling effect are found. The frequency
splitting and the energy threshold in the production of undulator radiation are
shown and discussed.Comment: 11 pages, 2 figure
A proof-of-concept neural network for inferring parameters of a black hole from partial interferometric images of its shadow
We test the possibility of using a convolutional neural network to infer the
inclination angle of a black hole directly from the incomplete image of the
black hole's shadow in the -plane. To this end, we develop a
proof-of-concept network and use it to explicitly find how the error depends on
the degree of coverage, type of input and coverage pattern. We arrive at a
typical error of at a level of absolute coverage (for a
pattern covering a central part of the -plane), (pattern covering
the central part and the periphery, the referring to the central part
only), and (uniform pattern). These numbers refer to a network that
takes both amplitude and phase of the visibility function as inputs. We find
that this type of network works best in terms of the error itself and its
distribution for different angles. In addition, the same type of network
demonstrates similarly good performance on highly blurred images mimicking
sources nearing being unresolved. In terms of coverage, the magnitude of the
error does not change much as one goes from the central pattern to the uniform
one. We argue that this may be due to the presence of a typical scale which can
be mostly learned by the network from the central part alone.Comment: 12 pages, 10 figures. For the code and trained models, see
https://bitbucket.org/cosmoVlad/neuro-rep
Radiation from relativistic electrons in "light" and in conventional undulators. Classical and quantum approaches
A photon spectrum of undulator radiation (UR) is calculated in the semi-classical approach. The UR intensity spectrum is determined by an electron trajectory in the undulator neglecting by energy losses for radiation. Using the Planck's law, the UR photon spectrum can be calculated from the classical intensity spectrum both for linear and nonlinear regimes. The radiation of an electron in a field of strong electromagnetic wave (radiation in the "light" undulator) is considered in the quantum electromagnetic frame. Comparison of results obtained by both approaches has been shown that UR spectra in the whole cone coincide with high accuracy for the case x<<1. Characteristics of the collimated UR beam were simulated with taking into account the discrete process of photon emission along an electron trajectory in both kinds of undulators
ΠΠΠΠΠΠΠ’ΠΠΠ¬ ΠΠ’ΠΠΠ‘ΠΠ’ΠΠΠ¬ΠΠΠΠ ΠΠΠͺΠΠΠ ΠΠ ΠΠΠ ΠΠΠ Π‘Π ΠΠΠ‘Π’ΠΠ ΠΠ ΠΠ€ΠΠΠΠΠ’ΠΠΠ ΠΠ Π’ΠΠ ΠΠΠΠ¬ΠΠΠ ΠΠΠΠΠ’ΠΠΠΠΠ Π Π₯ΠΠΠ ΠΠΠΠΠΠΠΠΠΠΠ
Intravascular volume preservation is the first choice measure for the prevention of intradialysis hypotension. At present there are devices that allow continuous monitoring of relative blood volume (RBV) changes during haemodialysis (HD). The aim of this research was to investigate (i) the regularity of RBV curve during haemo- dialysis and (ii) the efficacy of some measures for intravascular volume preservation. In patients with hyperhydration RBV curves were monotone; in all cases relation RBV/ ultrafiltration volume (UF) did not exceed 2,5%/L. In stable patients the RBV curve was immutable in the course of years. Patients with high RBV/UF ratio (>6%/L) formed a high risk group. In these patients stability of RBV was more im- portant and more useful. Isolated UF did not decrease RBV drop, as well as haemodiafiltration online. Albumin administration allows to decrease RBV/UF ratio. After bolus of hypertonic dextrose solution RBV increased for about half of hour. In patients with acute renal injury RBV monitoring was far from reliability in many cases.Β Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΊΡΠΎΠ²ΠΈ (ΠΠΠ) Π² Ρ
ΠΎΠ΄Π΅ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π° ΠΈ Π΄Π΅ΠΉΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΠΉ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΡ
Π½Π° ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π²Π½Ρ- ΡΡΠΈΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°. ΠΡΡΠ»Π΅ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΠΠ Π² Ρ
ΠΎΠ΄Π΅ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π° ΡΠ²ΠΈΠ»ΠΎΡΡ Π΄Π΅ΠΉΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠΉ ΠΊΠ°ΠΊ Π΄Π»Ρ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΈΠ½ΡΡΠ°Π΄ΠΈΠ°- Π»ΠΈΠ·Π½ΠΎΠΉ Π³ΠΈΠΏΠΎΡΠ΅Π½Π·ΠΈΠΈ, ΡΠ°ΠΊ ΠΈ ΠΏΡΠΈ ΠΎΡΡΠ°Π±ΠΎΡΠΊΠ΅ Β«ΡΡΡ
ΠΎΠ³ΠΎ Π²Π΅ΡΠ°Β». Π₯Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΊΡΠΈΠ²ΠΎΠΉ ΠΠΠ Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π½Π° ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠΌ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·Π΅ ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΡΠΌ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ
Π»Π΅Ρ. ΠΡΡΠΎΠΊΠΎΠ΅ (Π±ΠΎΠ»Π΅Π΅ 6% Π½Π° 1 Π»ΠΈΡΡ) ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΠΠ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠ»ΡΡΡΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (ΠΠΠ/Π£Π€) ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΡΡΠ²ΠΈΡΡ Π³ΡΡΠΏΠΏΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Ρ ΠΊΠΎΡΠΎΡΡΡ
ΠΎΠ±Π΅Π΄Π½Π΅Π½ΠΈΠ΅ Π²Π½ΡΡΡΠΈΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΡΠ°Π·- Π²ΠΈΡΠΈΡ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠΎΡΠ΅Π½Π·ΠΈΠΈ Π² Ρ
ΠΎΠ΄Π΅ ΡΠ΅Π°Π½ΡΠΎΠ² Π»Π΅ΡΠ΅Π½ΠΈΡ. ΠΠ·ΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠ»ΡΡΡΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΡ ΠΈ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°- ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΡ on line Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΡΠ»ΡΡΡΠΈΡΡ Π²ΠΎΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π²Π½ΡΡΡΠΈΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ°. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠ²ΠΎ- ΡΠ° Π°Π»ΡΠ±ΡΠΌΠΈΠ½Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ»ΠΎ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠ΅ΠΌΠΏ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΠΠΠ, Π° Π±ΠΎΠ»ΡΡΠ½ΠΎΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π³ΠΈΠΏΠ΅ΡΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ° Π³Π»ΡΠΊΠΎΠ·Ρ ΠΏΠΎΠ²ΡΡΠ°Π»ΠΎ ΠΠΠ Π½Π° ΡΡΠΎΠΊ ΠΎΠΊΠΎΠ»ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΠ°. Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΎΡΡΡΡΠΌ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡΠ΅ΠΊ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΠΠΠ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° ΠΎΠΊΠ°Π·ΡΠ²Π°Π»ΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌ.
Problems of Agricultural Policy Adaptation Within Sustainable Development Goals
The paper reveals problems of integrating national policy for increasing agricultural production and ecological consequences, including the important aspect of Russiaβs ratification of the Paris Agreement on climate, which provides additional opportunities for a decrease in carbon emissions. Current government programs for agricultural development in Russia, which include but are not limited to production growth and increase in agricultural exports, do not take into account the ecological consequences of such growth. The paper analyzes how the agriculture of Russia has evolved in the recent period (2007-2017) and what amount of greenhouse gas (GHG) emissions it has caused. Although in general emissions exhibited a decreasing trend, it was found that ploughing additional land for crop production had caused a large outburst of emissions from a small amount of land. Using the GLOBIOM partial equilibrium model, two scenarios of Russia's agricultural development until 2030 were formulated. The first one is intensive, with only a small amount of crop area growth but with a 45% increase in yields compared to current levels. The second scenario is an extensive one, with crop area growth of additional 6.4 million hectares and a total yield increase of 24% compared to current levels. Results have shown that crop and meat production increase in both scenarios, but the extensive one involves more emissions from additional ploughed land. To stop these kinds of practices, the recommendations would be to limit the ploughing of additional land and to improve statistical bookkeeping for a more accurate inclusion of land use and respective GHG emissions
ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° ΠΏΡΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ
Objective: to evaluate the dependence of the magnitude of convection flow in online hemodiafiltration (OLHDF) on ultrafiltration control method and patientsβ individual characteristics. Materials and methods. The study included 36 stable dialysis patients (20 male and 16 female). The substitution rate was conducted manually based on transmembrane pressure (TMP). In some cases, devices with automatic filtration rate control unit AutoSub plus were used. The filtration rate (FR), TMP, blood flow rate (Qb), specific filtration rate (SFR, m/l/min/mm Hgβ1 ) were recorded. Results. The maximum SFR in various patients ranged from 0.51 to 0.80 ml/min/mm Hgβ1 ; average value was 0.62 Β± 0.07 ml/min/mm Hgβ1 . There was significant correlation of SFR with hemoglobin level (r = β0.55). SFR reduced during hemodiafiltration (on average β by 23 Β± 4%). SFR was significantly affected by Qb (r = 0.70). Maximum SFR was achieved with a TMP of 140β220 mm Hg; with TMP over 250 mm Hg, a decrease in SFR was noted, an increase in Qb was required for further increase in FR. Individual stability of SFR was noted during serial observations; fluctuations in a particular patient did not exceed 10%. Substitution volume for the HDF session was 18.0 Β± 3.3 L, the FR/Qb ratio was 24.7 Β± 5.2%. Substitution volume of 21 L was not achieved in 17 of 36 patients. The use of automatic FR adjustment system made it possible to increase the substitution volume (SV) by 12β18%. Conclusion. Achieving maximum convection volume in OLHDF requires individualizing treatment parameters. The use of FR automatic control allows maximum possible convection flow.Π¦Π΅Π»Ρ: ΠΈΠ·ΡΡΠΈΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° ΠΏΡΠΈ ΠΎΠ½Π»Π°ΠΉΠ½ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (ΠΎΠ»ΠΠΠ€) ΠΎΡ ΡΠΏΠΎΡΠΎΠ±Π° ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ»ΡΡΡΠ°ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠ΅ΠΉ ΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΡΠ»ΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ 36 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (20 ΠΌΡΠΆΡΠΈΠ½ ΠΈ 16 ΠΆΠ΅Π½ΡΠΈΠ½), Π½Π°Ρ
ΠΎΠ΄ΡΡΠΈΡ
ΡΡ Π½Π° Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ°Π»ΠΈΠ·ΠΎΠΌ. Π£ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΡΡ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π² ΡΡΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΠ°Π½ΡΠΌΠ΅ΠΌΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ (Π’ΠΠ). Π ΡΡΠ΄Π΅ ΡΠ»ΡΡΠ°Π΅Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΡ Ρ Π±Π»ΠΎΠΊΠΎΠΌ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡΡ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (Π‘Π€) AutoSub plus. Π€ΠΈΠΊΡΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Π‘Π€, Π’ΠΠ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ° (Π‘Π), ΡΠ΄Π΅Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ (Π£Π‘Π€, ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ ΡΡ. ΡΡ.β1 ). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π£Π‘Π€ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π»Π°ΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
0,51β0,80 ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ ΡΡ. ΡΡ.β1 , ΡΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 0,62 Β± 0,07 ΠΌΠ»/ΠΌΠΈΠ½/ΠΌΠΌ ΡΡ. ΡΡ.β1 . ΠΡΠ»Π° ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° Π·Π½Π°ΡΠΈΠΌΠ°Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ Π£Π‘Π€ Ρ ΡΡΠΎΠ²Π½Π΅ΠΌ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° (r = β0,55). Π ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΎΡΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π£Π‘Π€ (Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ β Π½Π° 23 Β± 4%). ΠΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π£Π‘Π€ ΠΎΠΊΠ°Π·ΡΠ²Π°Π»Π° ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π‘Π (r = 0,70). ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π£Π‘Π€ Π΄ΠΎΡΡΠΈΠ³Π°Π»Π°ΡΡ ΠΏΡΠΈ Π’ΠΠ 140β220 ΠΌΠΌ ΡΡ. ΡΡ., ΠΏΡΠΈ Π’ΠΠ ΡΠ²ΡΡΠ΅ 250 ΠΌΠΌ ΡΡ. ΡΡ. ΠΎΡΠΌΠ΅ΡΠ°Π»ΠΎΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ Π£Π‘Π€, ΠΈ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΏΡΠΈΡΠΎΡΡΠ° Π‘Π€ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊΡΠΎΠ²ΠΎΡΠΎΠΊΠ°. ΠΡΠΈ ΡΠ΅ΡΠΈΠΉΠ½ΡΡ
Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡΡ
Π±ΡΠ»Π° ΠΎΡΠΌΠ΅ΡΠ΅Π½Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½Π°Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ Π£Π‘Π€, ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π»ΠΈ 10%. ΠΠ±ΡΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π·Π° ΡΠ΅Π°Π½Ρ ΠΠΠ€ ΡΠΎΡΡΠ°Π²ΠΈΠ» 18,0 Β± 3,3 Π», ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ Π‘Π€/Π‘Π 24,7 Β± 5,2%, ΠΏΡΠΈ ΡΡΠΎΠΌ Ρ 17 ΠΈΠ· 36 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π½Π΅ Π±ΡΠ» Π΄ΠΎΡΡΠΈΠ³Π½ΡΡ ΠΎΠ±ΡΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ 21 Π». ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²ΠΊΠΈ Π‘Π€ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ»ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΠΎΠ±ΡΠ΅ΠΌ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ (ΠΠ) Π½Π° 12β18%. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΏΡΠΈ ΠΎΠ»ΠΠΠ€ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π»Π΅ΡΠ΅Π½ΠΈΡ. ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π‘Π€ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ ΠΊΠΎΠ½Π²Π΅ΠΊΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠΎΡΠΎΠΊ
- β¦