1,304 research outputs found
Variability of Cu 2 ZnSnS 4 nanoparticle hot injection synthesis and modifications by thin film annealing
As a quaternary semiconductor with a direct energy bandgap of around 1.4 eV, Cu2ZnSnS4 is a promising candidate for absorber layers in next generation thin-film solar PV devices. It has the advantage of being based on low cost earth-abundant elements. Solution based synthesis approaches show the greatest potential for scaling up manufacture. Cu2ZnSnS4 devices are currently limited in efficiency because of a large open circuit voltage deficit, arising predominantly from high concentrations of point defects and charge compensation defect complexes. To drive device efficiency robust, reliable and reproducible synthesis protocols are required. We have produced a series of Cu2ZnSnS4 thin films by spin coating nanoparticle ink suspensions fabricated under nominally identical conditions to investigate the inherent variability in hot injection synthesis of Cu2ZnSnS4 nanoparticles by fabricating 11 batches using the same initial conditions. We use two different chemical routes to extratct nanoparticles from solution after synthesis. We find that the lattice constants of the nanocrystalline material do not change significantly. The relative concentration of the constituent elements varies with S having the largest anion variation of ±3.8% as compared to metal cation variations of Zn ±2.4%, Cu ±1.8%, and Sn ±1.4% with Zn having the largest cation variation. We compare data from energy dispersive X-ray (EDX) and inductively coupled plasma mass spectroscopy (ICPMS) chemical analysis methods and find that the ICPMS analysis has a consistently smaller standard deviation, an average of 0.1 lower, as this technique samples a large volume of material. We observe variation in the kesterite tetragonal lattice constants a and c, and energy bandgap Eg across the different samples, although there is no systematic change in the chemical composition. The average bandgap of as-synthesised films is 1.14 eV. We find that annealing in a sulphur rich environment has no systematic impact on the Cu/(Zn + Sn) cation ratio and leads to a decrease of −0.4 in the Zn/Sn ratio. At higher annealing temperatures, 500–600 °C, the bandgap shows a linear increase of +0.15 eV accompanied by the formation of abnormal grains and an increase in the size of the crystalline scattering domain τ, determined from the X-ray spectra, from 30–100 nm. The most dramatic changes occur in the first 0.5 hours of annealing. These findings will help in the design of fabrication strategies for higher efficiency Cu2ZnSnS4 photovoltaic devices
A Comparative Analysis of Soccer Skill Tests on Varying Experience Levels
Click the PDF icon to download the abstract
Screw dislocation in zirconium: An ab initio study
Plasticity in zirconium is controlled by 1/3 screw dislocations
gliding in the prism planes of the hexagonal close-packed structure. This
prismatic and not basal glide is observed for a given set of transition metals
like zirconium and is known to be related to the number of valence electrons in
the d band. We use ab initio calculations based on the density functional
theory to study the core structure of screw dislocations in zirconium.
Dislocations are found to dissociate in the prism plane in two partial
dislocations, each with a pure screw character. Ab initio calculations also
show that the dissociation in the basal plane is unstable. We calculate then
the Peierls barrier for a screw dislocation gliding in the prism plane and
obtain a small barrier. The Peierls stress deduced from this barrier is lower
than 21 MPa, which is in agreement with experimental data. The ability of an
empirical potential relying on the embedded atom method (EAM) to model
dislocations in zirconium is also tested against these ab initio calculations
Recommended from our members
Translation of Anticancer Efficacy From Nonclinical Models to the Clinic
Mouse cancer models have provided critical insights into tumor biology; however, clinical translation of these findings has been challenging. This perspective posits that factors impacting on successful translation start with limitations in capturing human cancer pathophysiology and end with challenges in generating robust translatable preclinical end points. A comprehensive approach that considers clinically relevant mouse models with both an integrated biomarker strategy and a complementary modeling and simulation effort will strengthen the current oncology drug development paradigm
Drag Assessment for Boundary Layer Control Schemes with Mass Injection
The present study considers uniform blowing in turbulent boundary layers as active flow control scheme for drag reduction on airfoils. The focus lies on the important question of how to quantify the drag reduction potential of this control scheme correctly. It is demonstrated that mass injection causes the body drag (the drag resulting from the stresses on the body) to differ from the wake survey drag (the momentum deficit in the wake of an airfoil), which is classically used in experiments as a surrogate for the former. This difference is related to the boundary layer control (BLC) penalty, an unavoidable drag portion which reflects the effort of a mass-injecting boundary layer control scheme. This is independent of how the control is implemented. With an integral momentum budget, we show that for the present control scheme, the wake survey drag contains the BLC penalty and is thus a measure for the inclusive drag of the airfoil, i.e. the one required to determine net drag reduction. The concept of the inclusive drag is extended also to boundary layers using the von Karman equation. This means that with mass injection the friction drag only is not sufficient to assess drag reduction also in canonical flows. Large Eddy Simulations and Reynolds-averaged Navier-Stokes simulations of the flow around airfoils are utilized to demonstrate the significance of this distinction for the scheme of uniform blowing. When the inclusive drag is properly accounted for, control scenarios previously considered to yield drag reduction actually show drag increase
The First Survey of X-ray Flares from Gamma Ray Bursts Observed by Swift: Spectral Properties and Energetics
Observations of gamma ray bursts (GRBs) with Swift produced the initially
surprising result that many bursts have large X-ray flares superimposed on the
underlying afterglow. The flares were sometimes intense, had rapid rise and
decay phases, and occurred late relative to the ``prompt'' phase. Some
remarkable flares are observed with fluence comparable to the prompt GRB
fluence. Many GRBs have several flares, which are sometimes overlapping. Short,
intense, repetitive, and late flaring can be most easily understood within the
context of the standard fireball model with the internal engine that powers the
prompt GRB emission in an active state at late times. However, other models for
flares have been proposed. Flare origin can be investigated by comparing the
flare spectra to that of the afterglow and the initial prompt emission. In this
work, we have analyzed all significant X-ray flares from the first 110 GRBs
observed by Swift. From this sample 33 GRBs were found to have significant
X-ray flares, with 77 flares that were detected above the 3 level. In
addition to temporal analysis presented in a companion paper, a variety of
spectral models have been fit to each flare. In some cases, we find that the
spectral fits favor a Band function model, which is more akin to the prompt
emission than to that of an afterglow. We find that the average fluence of the
flares is 2.4e-7 erg/cm^2/s in the 0.2-10 keV energy band, which is
approximately a factor of ten below the average prompt GRB fluence. These
results, when combined with those presented in the companion paper on temporal
properties of flares, supports the hypothesis that most X-ray flares are
late-time activity of the internal engine that spawned the initial GRB; not an
afterglow related effect.Comment: accepted by ApJ; 39 pages with 14 figures and 7 table
- …