183 research outputs found

    First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form

    Full text link
    We show that in analogy to the introduction of Poisson structures twisted by a closed 3-form by Park and Klimcik-Strobl, the study of three dimensional sigma models with Wess-Zumino term leads in a likewise way to twisting of Courant algebroid structures by closed 4-forms H. The presentation is kept pedagogical and accessible to physicists as well as to mathematicians, explaining in detail in particular the interplay of field transformations in a sigma model with the type of geometrical structures induced on a target. In fact, as we also show, even if one does not know the mathematical concept of a Courant algebroid, the study of a rather general class of 3-dimensional sigma models leads one to that notion by itself. Courant algebroids became of relevance for mathematical physics lately from several perspectives - like for example by means of using generalized complex structures in String Theory. One may expect that their twisting by the curvature H of some 3-form Ramond-Ramond gauge field will become of relevance as well.Comment: 25 pages, invited contribution to the Wolfgang Kummer memorial volum

    Autonomous Multicamera Tracking on Embedded Smart Cameras

    Get PDF
    There is currently a strong trend towards the deployment of advanced computer vision methods on embedded systems. This deployment is very challenging since embedded platforms often provide limited resources such as computing performance, memory, and power. In this paper we present a multicamera tracking method on distributed, embedded smart cameras. Smart cameras combine video sensing, processing, and communication on a single embedded device which is equipped with a multiprocessor computation and communication infrastructure. Our multicamera tracking approach focuses on a fully decentralized handover procedure between adjacent cameras. The basic idea is to initiate a single tracking instance in the multicamera system for each object of interest. The tracker follows the supervised object over the camera network, migrating to the camera which observes the object. Thus, no central coordination is required resulting in an autonomous and scalable tracking approach. We have fully implemented this novel multicamera tracking approach on our embedded smart cameras. Tracking is achieved by the well-known CamShift algorithm; the handover procedure is realized using a mobile agent system available on the smart camera network. Our approach has been successfully evaluated on tracking persons at our campus

    Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    Get PDF
    Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non-destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic fields. The technique puts the potential of the ToF time structure of pulsed neutron sources to full use in order to optimise the recorded information quality and reduce measurement time.Comment: 12 pages, 4 figure

    Sub-pixel correlation length neutron imaging:Spatially resolved scattering information of microstructures on a macroscopic scale

    Get PDF
    Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner.ISSN:2045-232

    An optimized single-crystal to polycrystal model of the neutron transmission of textured polycrystalline materials

    Get PDF
    The attenuation coefficient of textured materials presents a complex dependence on the preferred orientation with respect to the neutron beam. Presented here is an attenuation coefficient model to describe textured polycrystalline materials, based on a single-crystal to polycrystalline approach, aiming towards use in full-pattern least-squares refinements of wavelength-resolved transmission experiments. The model evaluates the Bragg contribution to the attenuation coefficient of polycrystalline materials as a combination of the Bragg-reflected component of a discrete number of imperfect single crystals with different orientations, weighted by the volume fraction of the corresponding component in the orientation distribution function. The proposed methodology is designed to optimize the number of single-crystal orientations involved in the calculation, considering the instrument resolution and the statistical uncertainty of the experimental transmission spectra. The optimization of the model is demonstrated through its application to experiments on calibration samples presenting random crystallographic textures, measured on two imaging instruments with different resolutions. The capability of the model to simulate textured samples in different orientations is shown with a copper sample used as a reference in texture studies of archaeological objects and a 316L stainless steel sample produced by laser powder-bed fusion. The ability of the model to predict the attenuation coefficient of polycrystalline textured materials on the basis of a reduced number of texture components opens the possibility of including it in a least-squares fitting routine to perform crystallographic texture analysis from wavelength-resolved transmission experiments.Fil: Malamud, Florencia. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Santisteban, Javier Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Vicente Alvarez, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Busi, Matteo. No especifíca;Fil: Polatidis, Efthymios. No especifíca;Fil: Strobl, Markus. No especifíca

    Neutron diffraction and diffraction contrast imaging for mapping the TRIP effect under load path change

    Get PDF
    The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additionally, the spatial distribution of the TRIP effect triggered by stress concentrations is visualized using neutron Bragg edge imaging including, e.g., weak positions of the cruciform geometry. The results demonstrate that neutron diffraction contrast imaging offers the possibility to capture the TRIP effect in objects with complex geometries under complex stress states.Fil: Polatidis, Efthymios. Paul Scherrer Institute; SuizaFil: Morgano, Manuel. Paul Scherrer Institute; SuizaFil: Malamud, Florencia. Comision Nacional de Energia Atomica. Gerencia D/area Invest y Aplicaciones No Nucleares. Departamento Haces de Neutrones del Ra10 - Cab.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Bacak, Michael. Paul Scherrer Institute; SuizaFil: Panzner, Tobias. Paul Scherrer Institute; Suiza. Swissneutronics; SuizaFil: Van Swygenhoven, Helena. Paul Scherrer Institute; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Strobl, Markus. Paul Scherrer Institute; Suiz
    corecore