31 research outputs found

    Hold Back of RNA Polymerase II at the Transcription Start Stite Mediates Down-regulation of c- myc in Vivo.

    No full text
    Premature termination of transcription is assumed to be an important mechanism of c-myc regulation. Induction of terminal differentiation in the promyelocytic leukemia cell line HL60 by dimethyl-sulfoxide (DMSO) is accompanied by a block of RNA elongation within the first exon of the c-myc gene. We have studied the 3'-structure of incompletely elongated transcripts in (i) nuclear RNA of induced and uninduced HL60 cells, (ii) nuclear run-on RNA, and (iii) RNA of in vitro transcribed c-myc constructs. Elongation of c-myc RNA stopped in all three transcriptional systems at similar sites distributed 150-350 bases downstream of the P2 promoter. When HL60 cells were induced to terminal differentiation the short c-myc exon 1 specific RNAs disappeared in nuclear RNA. This implied that RNA polymerase II (pol II) does not continue to transcribe c-myc exon 1 in induced HL60 cells as suggested by earlier nuclear run-on experiments. Therefore, kinetic experiments with small oligonucleotides as probes were performed to determine the start position of pol II on c-myc exon 1 in nuclear run-ons. The results demonstrate that all RNA polymerases are localized at the c-myc P2 promoter in DMSO-treated HL60 cells. Preparation of nuclei for run-on experiments induces a release of pol II from the c-myc P2 promoter leading to the strong nuclear run-on signal on c-myc exon 1. Thus, down-regulation of c-myc in differentiating HL60 cells occurs by retention of pol II at the transcription start site

    EBNA-2 and Notch Signalling.

    No full text

    Early down-regulation of c-myc in dimethylsulfoxide-induced mouse erythroleukemia (MEL) cells is mediated at the P1/P2 promoters.

    No full text
    A block of RNA elongation in exon 1 of the murine c-myc gene has been described for normal mouse fibroblats, lymphoid and myeloid cell lines and mouse erythroleukemia (MEL) cells. MEL cells differentiate after induction with the chemical agent dimethylsulfoxide (DMSO). The rapid initial down-regulation of c-myc that occurs after treatment with DMSO has been explained by an increase in the block of RNA elongation within the 3′ part of c-myc exon 1. In contrast to these reports, we find that down-regulation of c-myc in DMSO-induced MEL cells occurs at the c-myc P1 and P2 promoters. The P1 promoter is repressed by inhibition of initiation, whereas transcription of P2 RNA is blocked by retention of RNA polymerase II at or close to the P2 promoter. The earlier described block of RNA elongation at a run of five thymidines in the 3′ part of c-myc exon 1 was not observed

    Activation of the Notch-regulated transcription factor CBF1/RBP-J kappa through the 13SE1A oncoprotein

    No full text
    Signaling through the Notch pathway controls cell growth and differentiation in metazoans. Following binding of its ligands, the intracellular part of the cell surface Notch1 receptor (Notch1-IC) is released and translocates to the nucleus, where it alters the function of the DNA-binding transcription factor CBF1/RBP-Jκ. As a result, CBF1/RBP-Jκ is converted from a repressor to an activator of gene transcription. Similarly, the Epstein Barr viral oncoprotein EBNA2, which is required for B-cell immortalization, activates genes through CBF1. Moreover, the TAN-1 and int-3 oncogenes represent activated versions of Notch1 and Notch4, respectively. Here, we show that the adenoviral oncoprotein 13S E1A also binds to CBF1/RBP-Jκ, displaces associated corepressor complexes, and activates CBF1/RBP-Jκ-dependent gene expression. Our results suggest that the central role of the Notch-CBF1/RBP-Jκ signaling pathway in cell fate decisions renders it susceptible to pathways of viral replication and oncogenic conversion

    Crucial sequences within the Epstein-Barr virus TP1 promoter for EBNA2- mediated transactivation and interaction of EBNA2 with its responsive element.

    No full text
    EBNA2 is one of the few genes of Epstein-Barr virus which are necessary for immortalization of human primary B lymphocytes. The EBNA2 protein acts as a transcriptional activator of several viral and cellular genes. For the TP1 promoter, we have shown previously that an EBNA2-responsive element (EBNA2RE) between -258 and -177 relative to the TP1 RNA start site is necessary and sufficient for EBNA2-mediated transactivation and that it binds EBNA2 through a cellular factor. To define the critical cis elements within this region, we cloned EBNA2RE mutants in front of the TP1 minimal promoter fused to the reporter gene for luciferase. Transactivation by EBNA2 was tested by transfection of these mutants in the absence and presence of an EBNA2 expression vector into the established B-cell line BL41-P3HR-1. The analysis revealed that two identical 11-bp motifs and the region 3' of the second 11- bp motif are essential for transactivation by EBNA2. Methylation interference experiments indicated that the same cellular factor in the absence of EBNA2 binds either one (complex I) or both (complex III) 11-bp motifs with different affinities, giving rise to two different specific protein-DNA complexes within the left-hand 54 bp of EBNA2RE. A third specific complex was shown previously to be present only in EBNA2-expressing cells and to contain EBNA2. Analysis of this EBNA2-containing complex revealed the same protection pattern as for complex III, indicating that EBNA2 interacts with DNA through binding of the cellular protein to the 11-bp motifs. Mobility shift assays with the different mutants demonstrated that one 11-bp motif is sufficient for binding the cellular factor, whereas for binding of EBNA2 as well as for efficient transactivation by EBNA2, both 11-bp motifs are required

    Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation.

    Get PDF
    Notch1 (N1) receptor signaling is essential and sufficient for T cell development, and recently developed in vitro culture systems point to members of the Delta family as being the physiological N1 ligands. We explored the ability of Delta1 (DL1) and DL4 to induce T cell lineage commitment and/or maturation in vitro and in vivo from bone marrow (BM) precursors conditionally gene targeted for N1 and/or N2. In vitro DL1 can trigger T cell lineage commitment via either N1 or N2. N1- or N2-mediated T cell lineage commitment can also occur in the spleen after short-term BM transplantation. However, N2-DL1-mediated signaling does not allow further T cell maturation beyond the CD25(+) stage due to a lack of T cell receptor beta expression. In contrast to DL1, DL4 induces and supports T cell commitment and maturation in vitro and in vivo exclusively via specific interaction with N1. Moreover, comparative binding studies show preferential interaction of DL4 with N1, whereas binding of DL1 to N1 is weak. Interestingly, preferential N1-DL4 binding reflects reduced dependence of this interaction on Lunatic fringe, a glycosyl transferase that generally enhances the avidity of Notch receptors for Delta ligands. Collectively, our results establish a hierarchy of Notch-Delta interactions in which N1-DL4 exhibits the greatest capacity to induce and support T cell development
    corecore