3,005 research outputs found
Neutron star properties in the Thomas-Fermi model
The modern nucleon-nucleon interaction of Myers and Swiatecki, adjusted to
the properties of finite nuclei, the parameters of the mass formula, and the
behavior of the optical potential is used to calculate the properties of
--equilibrated neutron star matter, and to study the impact of this
equation of state on the properties of (rapidly rotating) neutron stars and
their cooling behavior. The results are in excellent agreement with the outcome
of calculations performed for a broad collection of sophisticated
nonrelativistic as well as relativistic models for the equation of state.Comment: 23 pages, LaTeX, 15 ps-figure
On the minimum and maximum mass of neutron stars and the delayed collapse
The minimum and maximum mass of protoneutron stars and neutron stars are
investigated. The hot dense matter is described by relativistic (including
hyperons) and non-relativistic equations of state. We show that the minimum
mass ( 0.88 - 1.28 M_{\sun}) of a neutron star is determined by the
earliest stage of its evolution and is nearly unaffected by the presence of
hyperons. The maximum mass of a neutron star is limited by the protoneutron
star or hot neutron star stage. Further we find that the delayed collapse of a
neutron star into a black hole during deleptonization is not only possible for
equations of state with softening components, as for instance, hyperons, meson
condensates etc., but also for neutron stars with a pure nucleonic-leptonic
equation of state.Comment: 6 pages, 4 figures, using EDP Siences Latex A&A style, to be
published in A&
Macroscopic Anisotropy and Symmetry Breaking in the Pyrochlore Antiferromagnet GdTiO}
In the Heisenberg antiferromagnet , the exchange interactions
are geometrically frustrated by the pyrochlore lattice structure. This ESR
study reveals a strong temperature dependent anisotropy with respect to a [111]
body diagonal below a temperature K, despite the spin only nature of
the ion. Anisotropy and symmetry breaking can nevertheless appear
through the superexchange interaction. The presence of short range planar
correlation restricted to specific Kagom\'{e} planes is sufficient to explain
the two ESR modes studied in this work.Comment: 4 pages, 5 figure
Observing the emergence of chaos in a many-particle quantum system
Accessing the connection between classical chaos and quantum many-body
systems has been a long-standing experimental challenge. Here, we investigate
the onset of chaos in periodically driven two-component Bose-Einstein
condensates, whose small quantum uncertainties allow for exploring the phase
space with high resolution. By analyzing the uncertainties of time-evolved
many-body states, we find signatures of elliptic and hyperbolic periodic orbits
generated according to the Poincar\'e-Birkhoff theorem, and the formation of a
chaotic region at increasing driving strengths. The employed fluctuation
analysis allows for probing the phase-space structure by use of only short-time
quantum dynamics.Comment: 5+2 pages, 4 figure
- …