122 research outputs found

    Ethnicity and gender related differences in extended intraesophageal pH monitoring parameters in infants: a retrospective study

    Get PDF
    BACKGROUND: Gastroesophageal reflux disease (GERD) is believed to be more common in adult males as compared to females. It also has been shown in adults to be more common in Caucasians. We wanted to determine ethnicity and gender related differences for extended pH monitoring parameters in infancy. METHODS: Extended pH monitoring data (EPM) from infants <1 year of age were reviewed. Results were classified in two groups, as control and Gastroesophageal reflux disease (GERD) group based on the reflux index (RI). The GERD group had RI of equal to or more than 5% of total monitoring period. The parameters of RI, total number of episodes of pH < 4, and the number of episodes with pH < 4 lasting more than 5 minutes were compared by genders and by ethnic groups, Caucasians and African American (AA). RESULTS: There were 569 infants, 388 controls, 181 with GERD (320 males, 249 females; 165 Caucasians, 375 AA). No statistical difference in EPM parameters was detected between genders in both groups. However, Caucasian infants had a significantly higher incidence of GERD than AA infants (p = 0.036). On stratifying by gender, Caucasian females had a significantly higher number of reflux episodes >5 minutes as compared to AA females in the control group (p = 0.05). Furthermore, Caucasian females with GERD showed an overall higher trend for all parameters. Caucasian males had a trend for higher mean number of reflux episodes as compared to AA males in the control group (p = 0.09). CONCLUSION: Although gender specific control data do not appear warranted in infants undergoing EPM, ethnic differences related to an overall increased incidence of pathologic GERD in Caucasian infants should be noted

    Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents

    Get PDF
    BACKGROUND: The suppressor of cytokine signaling (SOCS)-3 is a negative feedback regulator of cytokine signaling and also influences leptin signaling. We investigated association of variations in the coding sequence and promoter region of SOCS3 with extreme obesity in German children and adolescents. METHODS: An initial screen for sequence variations in 181 extremely obese children and adolescents and 188 healthy underweight adults revealed two previously reported single nucleotide polymorphisms (SNPs) in the SOCS3 5' region: -1044 C>A (numbering refers to bases upstream of ATG in exon 2) within a predicted STAT3 binding element and -920 C>A (rs12953258, for numbering, see above). RESULTS: We did not detect significant differences in allele or genotype frequencies for any of these SNPs between the analysed study groups (all nominal p > 0.2). In addition, we performed a pedigree transmission disequilibrium test (PDT) for the SNP -1044 C>A in families comprising 703 obese children and adolescents, 281 of their obese siblings and both biological parents. The PDT revealed no transmission disequilibrium (nominal p > 0.05). CONCLUSION: In conclusion, our data do not suggest evidence for a major role of the respective SNPs in SOCS3 in the pathogenesis of extreme obesity in our study groups

    ENU Mutagenesis Identifies Mice with Morbid Obesity and Severe Hyperinsulinemia Caused by a Novel Mutation in Leptin

    Get PDF
    BACKGROUND: Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals. METHODOLOGY/PRINCIPAL FINDINGS: To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU) mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin(145E/145E) mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin(145E/145E) mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin(145E/145E) mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region. CONCLUSIONS/SIGNIFICANCE: Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse model for the study of human obesity syndrome

    Leptin Replacement Improves Cognitive Development

    Get PDF
    Leptin changes brain structure, neuron excitability and synaptic plasticity. It also regulates the development and function of feeding circuits. However, the effects of leptin on neurocognitive development are unknown.To evaluate the effect of leptin on neurocognitive development.A 5-year-old boy with a nonconservative missense leptin gene mutation (Cys-to-Thr in codon 105) was treated with recombinant methionyl human leptin (r-metHuLeptin) at physiologic replacement doses of 0.03 mg/kg/day. Cognitive development was assessed using the Differential Ability Scales (DAS), a measure of general verbal and nonverbal functioning; and selected subtests from the NEPSY, a measure of neuropsychological functioning in children.Prior to treatment, the patient was morbidly obese, hypertensive, dyslipidemic, and hyperinsulinemic. Baseline neurocognitive tests revealed slower than expected rates of development (developmental age lower than chronological age) in a majority of the areas assessed. After two years, substantial increases in the rates of development in most neurocognitive domains were apparent, with some skills at or exceeding expectations based on chronological age. We also observed marked weight loss and resolution of hypertension, dyslipidemia and hyperinsulinemia.We concluded that replacement with r-metHuLeptin is associated with weight loss and changes in rates of development in many neurocognitive domains, which lends support to the hypothesis that, in addition to its role in metabolism, leptin may have a cognitive enhancing role in the developing central nervous system.ClinicalTrials.gov NCT00659828

    Genetic association study of selected candidate genes (ApoB, LPL, Leptin) and telomere length in obese and hypertensive individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genetic study was carried out among obese and hypertensive individuals from India to assess allelic association, if any, at three candidate loci: Apolipoprotein B (ApoB) minisatellite and two tetranucleotide repeat loci; LPL (Lipoprotein lipase) and Leptin. Attempt has also been made to find out whether telomere length attrition is associated with hypertension and obese individuals.</p> <p>Methods</p> <p>Venous blood samples were collected from 37 normal, 35 obese and 47 hypertensive individuals. Genomic DNA was extracted from peripheral blood mononuclear cells (PBMC) and PCR amplifications were achieved using locus specific primers. Genotyping of ApoB minisatellite was performed using 4% polyacrylamide gel electrophoresis (PAGE) followed by silver staining, whereas LPL and Leptin loci were genotyped using ALF Expressβ„’ DNA sequencer. Telomere length was determined using a recently developed real time based quantitative PCR, where the relative telomere length was determined by calculating the relative ratio of telomere (T) and single copy gene (S) PCR products which is expressed as T/S ratio.</p> <p>Results</p> <p>All the three loci are highly polymorphic, display high heterozygosity and conform to Hardy-Weinberg's equilibrium expectations. ApoB minisatellite displayed 14 alleles, whereas LPL and Leptin tetranucleotide loci were having 9 and 17 alleles, respectively. Interestingly two new alleles (9 and 11 repeats) were detected at ApoB locus for the first time. The alleles at Leptin locus were classified as Class I (lower alleles: 149-200 bp) and Class II alleles (higher alleles: >217 bp). Higher alleles at ApoB (>39 repeats), predominant allele 9 at LPL and alleles 164 bp and 224 bp at Leptin loci have shown allelic association with hypertensive individuals. After adjusting the influence of age and gender, the analysis of co-variance (ANCOVA) revealed the relative telomere length (T/S ratio) in hypertensive individuals to be (1.01 Β± 0.021), which was significantly different (P < 0.001) from obese (1.20 Β± 0.023) and normal (1.22 Β± 0.014) individuals. However, no significant difference in the relative telomere length was observed among male and female individuals, although age related decrease in telomere length was observed in these limited sample size.</p> <p>Conclusion</p> <p>The present study revealed that allelic association at ApoB, LPL, Leptin loci and loss of telomere length may have strong genetic association with hypertensive individuals. However, further study on larger sample size is needed to draw firm conclusions.</p

    From monogenic to polygenic obesity: recent advances

    Get PDF
    The heritability of obesity and body weight in general is high. A small number of confirmed monogenic forms of obesityβ€”the respective mutations are sufficient by themselves to cause the condition in food abundant societiesβ€”have been identified by molecular genetic studies. The elucidation of these genes, mostly based on animal and family studies, has led to the identification of important pathways to the disorder and thus to a deeper understanding of the regulation of body weight. The identification of inborn deficiency of the mostly adipocyte-derived satiety hormone leptin in extremely obese children from consanguineous families paved the way to the first pharmacological therapy for obesity based on a molecular genetic finding. The genetic predisposition to obesity for most individuals, however, has a polygenic basis. A polygenic variant by itself has a small effect on the phenotype; only in combination with other predisposing variants does a sizeable phenotypic effect arise. Common variants in the first intron of the β€˜fat mass and obesity associated’ gene (FTO) result in an elevated body mass index (BMI) equivalent to approximately +0.4Β kg/mΒ² per risk allele. The FTO variants were originally detected in a genome wide association study (GWAS) pertaining to type 2 diabetes mellitus. Large meta-analyses of GWAS have subsequently identified additional polygenic variants. Up to December 2009, polygenic variants have been confirmed in a total of 17 independent genomic regions. Further study of genetic effects on human body weight regulation should detect variants that will explain a larger proportion of the heritability. The development of new strategies for diagnosis, treatment and prevention of obesity can be anticipated

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality
    • …
    corecore