31 research outputs found

    Staphylococcal complement evasion by various convertase-blocking molecules

    Get PDF
    To combat the human immune response, bacteria should be able to divert the effectiveness of the complement system. We identify four potent complement inhibitors in Staphylococcus aureus that are part of a new immune evasion cluster. Two are homologues of the C3 convertase modulator staphylococcal complement inhibitor (SCIN) and function in a similar way as SCIN. Extracellular fibrinogen-binding protein (Efb) and its homologue extracellular complement-binding protein (Ecb) are identified as potent complement evasion molecules, and their inhibitory mechanism was pinpointed to blocking C3b-containing convertases: the alternative pathway C3 convertase C3bBb and the C5 convertases C4b2aC3b and C3b2Bb. The potency of Efb and Ecb to block C5 convertase activity was demonstrated by their ability to block C5a generation and C5a-mediated neutrophil activation in vitro. Further, Ecb blocks C5a-dependent neutrophil recruitment into the peritoneal cavity in a mouse model of immune complex peritonitis. The strong antiinflammatory properties of these novel S. aureus–derived convertase inhibitors make these compounds interesting drug candidates for complement-mediated diseases

    Pathogens under stress

    No full text

    Neutrophil-mediated phagocytosis of Staphylococcus aureus

    Get PDF
    For invading staphylococci, phagocytosis an killing bij human neutrophils is the biggest threat. Neutrophils are the only cells that can effectively kill staphylococci by engulfment and subsequent bombardment with proteases, amidases, antimicrobial peptides and proteins in concert with reactive oxygen species that are generated during the metabolic burst.Both complement and antibodies are crucial for effective uptake and neutrophil activation. S. aureus is not an innocent bystander in this process. It actively secretes several proteins to impair every single step in this process from receptor modulation, to complement inhibition to neutrophil lysis to protease, antimicrobial peptide inhibition and resistance to reactive oxygen species. For the design of future novel antimicrobial strategies: therapeutic antibodies, vaccines, novel antibiotics, all this should be taken into account. Still the best way to treat diseases is to help to enhance the natural defence mechanism that are already in place

    Staphylococcal immune evasion proteins : Structure, function, and host adaptation

    No full text
    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases

    Neutrophils versus staphylococcus aureus : A biological tug of war*

    No full text
    The pathogen Staphylococcus aureus is well adapted to its human host. Neutrophil-mediated killing is a crucial defense system against S. aureus; however, the pathogen has evolved many strategies to resist killing. We first describe the discrete steps of neutrophil activation and migration to the site of infection and the killing of microbes by neutrophils in general. We then highlight the different approaches utilized by S. aureus to resist the different steps of neutrophil attack. Various molecules are discussed in their evolutionary context. Most of the molecules secreted by S. aureus to combat neutrophil attacks at the site of infection show clear human specificity. Many elements of human neutrophil defenses appear redundant, and so the evasion strategies of staphylococci display redundant functions as well. All efforts by S. aureus to resist neutrophil-mediated killing stress the importance of these mechanisms in the pathophysiology of staphylococcal diseases. However, the highly human-specific nature of most host-pathogen interactions hinders the in vivo establishment of their contribution to staphylococcal pathophysiology.

    Identification and structural characterization of a novel myeloperoxidase inhibitor from Staphylococcus delphini

    No full text
    Staphylococcus aureus and related species are highly adapted to their hosts and have evolved numerous strategies to evade the immune system. S. aureus shows resistance to killing following uptake into the phagosome, which suggests that the bacterium evades intracellular killing mechanisms used by neutrophils. We recently discovered an S. aureus protein (SPIN for Staphylococcal Peroxidase INhibitor) that binds to and inhibits myeloperoxidase (MPO), a major player in the oxidative defense of neutrophils. To allow for comparative studies between multiple SPIN sequences, we identified a panel of homologs from species closely related to S. aureus. Characterization of these proteins revealed that SPIN molecules from S. agnetis, S. delphini, S. schleiferi, and S. intermedius all bind human MPO with nanomolar affinities, and that those from S. delphini, S. schleiferi, and S. intermedius inhibit human MPO in a dose-dependent manner. A 2.4 Å resolution co-crystal structure of SPIN-delphini bound to recombinant human MPO allowed us to identify conserved structural features of SPIN proteins, and to propose sequence-dependent physical explanations for why SPIN-aureus binds human MPO with higher affinity than SPIN-delphini. Together, these studies expand our understanding of MPO binding and inhibition by a recently identified component of the staphylococcal innate immune evasion arsenal

    Distinct localization of the complement C5b-9 complex on Gram-positive bacteria

    No full text
    The plasma proteins of the complement system fulfil important immune defence functions, including opsonization of bacteria for phagocytosis, generation of chemo-attractants and direct bacterial killing via the Membrane Attack Complex (MAC or C5b-9). The MAC is comprised of C5b, C6, C7, C8, and multiple copies of C9 that generate lytic pores in cellular membranes. Gram-positive bacteria are protected from MAC-dependent lysis by their thick peptidoglycan layer. Paradoxically, several Gram-positive pathogens secrete small proteins that inhibit C5b-9 formation. In this study, we found that complement activation on Gram-positive bacteria in serum results in specific surface deposition of C5b-9 complexes. Immunoblotting revealed that C9 occurs in both monomeric and polymeric (SDS-stable) forms, indicating the presence of ring-structured C5b-9. Surprisingly, confocal microscopy demonstrated that C5b-9 deposition occurs at specialized regions on the bacterial cell. On Streptococcus pyogenes, C5b-9 deposits near the division septum whereas on Bacillus subtilis the complex is located at the poles. This is in contrast to C3b deposition, which occurs randomly on the bacterial surface. Altogether, these results show a previously unrecognized interaction between the C5b-9 complex and Gram-positive bacteria, whichmight ultimately lead to a new model of MAC assembly and functioning
    corecore