28 research outputs found

    Abundant kif21b is associated with accelerated progression in neurodegenerative diseases

    Get PDF
    Kinesin family member 21b (kif21b) is one of the few multiple sclerosis (MS) risk genes with a presumed central nervous system function. Kif21b belongs to the kinesin family, proteins involved in intracellular transport of proteins and organelles. We hypothesised that kif21b is involved in the neurodegenerative component of MS and Alzheimer¿s (AD) disease. Post-mortem kinesin expression was assessed in 50 MS, 58 age and gender matched non-demented controls (NDC) and 50 AD. Kif21b expression was five-fold increased in AD compared to MS and NDC aged below 62 years (p¿=¿8*10¿5), three-fold between 62¿72 years (p¿=¿0.005) and not different above 72 years. No significant differences were observed between MS and NDC. In AD, kif21b expression was two-fold increased in Braak stage 6 (scoring for density of neurofibrillary tangles) compared with stage 5 (p¿=¿0.003). In MS patients, kif21b correlated with the extent of grey matter demyelination (Spearman¿s rho¿=¿0.31, p¿=¿0.03). Abundant kif21b, defined as expression above the median, was associated with a two-fold accelerated development of the Kurtzke Expanded Disability Status Scale (EDSS) 6.0 (median time in low kif21b group 16 years vs. high kif21b 7.5 years, log-rank test p¿=¿0.04) in MS. Given the genetic association of kif21b with MS, the results were stratified according to rs12122721[A] single nucleotide polymorphism (SNP). No association was found between kif21b expression or the time to EDSS 6 in kif21b risk SNP carriers compared to non-risk carriers. Kif21b was expressed in astrocytes in addition to neurons. Upon astrocyte activation, kif21b increased nine-fold. Abundant kif21b expression is associated with severe MS and AD pathology and with accelerated neurodegeneration independent of the kif21b risk SNP

    The adult human subventricular zone: partial ependymal coverage and proliferative capacity of cerebrospinal fluid

    Get PDF
    Neurogenesis continues throughout adulthood in specialized regions of the brain. One of these regions is the subventricular zone. During brain development, neurogenesis is regulated by a complex interplay of intrinsic and extrinsic cues that control stem-cell survival, renewal and cell lineage specification. Cerebrospinal fluid (CSF) is an integral part of the neurogenic niche in development as it is in direct contact with radial glial cells, and it is important in regulating proliferation and migration. Yet, the effect of CSF on neural stem cells in the subventricular zone of the adult human brain is unknown. We hypothesized a persistent stimulating effect of ventricular CSF on neural stem cells in adulthood, based on the literature, describing bulging accumulations of subventricular cells where CSF is in direct contact with the subventricular zone. Here, we show by immunohistochemistry on post-mortem adult human subventricular zone sections that neural stem cells are in close contact with CSF via protrusions through both intact and incomplete ependymal layers. We are the first to systematically quantify subventricular glial nodules denuded of ependyma and consisting of proliferating neural stem and progenitor cells, and showed that they are present from foetal age until adulthood. Neurosphere, cell motility and differentiation assays as well as analyses of RNA expression were used to assess the effects of CSF of adult humans on primary neural stem cells and a human immortalized neural stem cell line. We show that human ventricular CSF increases proliferation and decreases motility of neural stem cells. Our results also indicate that adult CSF pushes neural stem cells from a relative quiescent to a more active state and promotes neuronal over astrocytic lineage differentiation. Thus, CSF continues to stimulate neural stem cells throughout aging

    Astrocyte-Derived Tissue Transglutaminase Interacts with Fibronectin: A Role in Astrocyte Adhesion and Migration?

    Get PDF
    An important neuropathological feature of neuroinflammatory processes that occur during e.g. Multiple Sclerosis (MS) is the formation of an astroglial scar. Astroglial scar formation is facilitated by the interaction between astrocytes and extracellular matrix proteins (ECM) such as fibronectin. Since there is evidence indicating that glial scars strongly inhibit both axon growth and (re)myelination in brain lesions, it is important to understand the factors that contribute to the interaction between astrocytes and ECM proteins. Tissue Transglutaminase (TG2) is a multifunctional enzyme with an ubiquitous tissue distribution, being clearly present within the brain. It has been shown that inflammatory cytokines can enhance TG2 activity. In addition, TG2 can mediate cell adhesion and migration and it binds fibronectin with high affinity. We therefore hypothesized that TG2 is involved in astrocyte-fibronectin interactions. Our studies using primary rat astrocytes show that intracellular and cell surface expression and activity of TG2 is increased after treatment with pro-inflammatory cytokines. Astrocyte-derived TG2 interacts with fibronectin and is involved in astrocyte adhesion onto and migration across fibronectin. TG2 is involved in stimulating focal adhesion formation which is necessary for the interaction of astrocytes with ECM proteins. We conclude that astrocyte-derived TG2 contributes to the interaction between astrocytes and fibronectin. It might thereby regulate ECM remodeling and possibly glial scarring

    Activation of endogenous neural stem cells for multiple sclerosis therapy

    No full text
    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability.A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions

    Activation of endogenous neural stem cells for multiple sclerosis therapy

    No full text
    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions

    Activation of endogenous neural stem cells for multiple sclerosis therapy

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic neurological disability. A promising perspective for future therapy of MS is the regeneration of lesions with replacement of the damaged oligodendrocytes or neurons. Therapies targeting to the enhancement of endogenous remyelination, aim to promote the activation of either the parenchymal oligodendrocyte progenitor cells or the subventricular zone-derived neural stem cells (NSCs). Less studied but highly potent, is the strategy of neuronal regeneration with endogenous NSCs that although being linked to numerous limitations, is anticipated to ameliorate cognitive disability in MS. Focusing on the forebrain, this review highlights the role of NSCs in the regeneration of MS lesions

    Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis

    No full text
    Autoantibodies and complement opsonization have been implicated in the process of demyelination in the major human CNS demyelinating disease multiple sclerosis (MS), but scavenger receptors (SRs) may also play pathogenetic roles. We characterized SR mRNA and protein expression in postmortem brain tissue from 13 MS patients in relation to active demyelination. CD68, chemokine (C-X-C motif) ligand 16 (CXCL16), class A macrophage SR (SR-AI/II), LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1), FcγRIII, and LRP-1 (low-density lipoprotein receptor-related protein 1) mRNA were upregulated in the rims of chronic active MS lesions. CD68 and CXCL16 mRNA were also upregulated around chronic active MS lesions. By immunohistochemistry, CD68, CXCL16, and SR-AI/II were expressed by foamy macrophages in the rim and by ramified microglia around chronic active MS lesions. CXCL16 and SR-AI/II were also expressed by astrocytes in MS lesions and by primary human microglia and astrocytes in vitro. These data suggest that SRs are involved in myelin uptake in MS, and that upregulation of CD68, CXCL16, and SR-AI/II is one of the initial events in microglia as they initiate myelin phagocytosis. As demyelination continues, additional upregulation of LOX-1, FcγRIII, and LRP-1 may facilitate this proces

    Isolation of neural progenitor cells from the human adult subventricular zone based on expression of the cell surface marker CD271

    No full text
    Neural progenitor cells (NPCs) in the subventricular zone (SVZ) hold promise for future therapy for neurodegenerative disorders, because the stimulation of adult neurogenesis could potentially restore the function of degenerating neurons and glia. To obtain more knowledge on these NPCs, we developed a method to specifically isolate NPCs from postmortem adult human brains based on the expression of the specific human adult neural stem/progenitor cell marker glial fibrillary acidic protein δ (GFAPδ). An extensive immunophenotyping analysis for cell surface markers resulted in the observation that CD271 was limited to the SVZ-derived GFAPδ-positive cells. CD271(+) cells developed into neurospheres and could be differentiated into astrocytes, neurons, and oligodendrocytes. We are the first to show that a pure population of NPCs can be isolated from the adult human SVZ, which is highly instrumental for developing future therapies based on stimulating endogenous SVZ neurogenesi

    Characterization of macrophages from schizophrenia patients

    No full text
    Genetic, epidemiological and post mortem studies have described an association between schizophrenia (SCZ) and the immune system. Microglia, the tissue-resident macrophages of the brain, not only play an essential role in inflammatory processes, but also in neurodevelopment and synapse refinement. It has therefore been hypothesized that aberrant functioning of these myeloid immune cells is involved in SCZ pathogenesis. Until now cellular research into the role of myeloid cells in SCZ has been limited to monocytes and functional assays are lacking. In this study we used monocyte-derived macrophages (mo-MΦs) as a model for macrophages and microglia in the CNS and examined two main functions: Inflammatory responses and expression and regulation of synapse refinement molecules. The expression of 24 genes involved in these key functions was assessed. Mo-MΦs were generated from 15 SCZ patients and 15 healthy controls. The cells were exposed to pro-inflammatory and anti-inflammatory stimuli (LPS, R848, IL-4 and dexamethasone), and the response was measured by qPCR and ELISA analyses. One of the genes of interest, P2RX7 that is associated with psychiatric diseases, was significantly reduced in expression after LPS stimulation in SCZ patients. None of the other assessed characteristics were different in this functional screen between mo-MΦs from SCZ patients compared to controls. Although these data suggest that overall the function of macrophages in SCZ is not impaired, further studies with larger groups that enable the possibility to study clinical subgroups and perform additional screenings to asses the full phenotype of the mo-MΦs are needed to strengthen this conclusion

    GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner

    No full text
    Gliomas are the most common primary brain tumors. Their highly invasive character and the heterogeneity of active oncogenic pathways within single tumors complicate the development of curative therapies and cause poor patient prognosis. Glioma cells express the intermediate filament protein glial fibrillary acidic protein (GFAP), and the level of its alternative splice variant GFAP-δ, relative to its canonical splice variant GFAP-α, is higher in grade IV compared with lower-grade and lower malignant glioma. In this study we show that a high GFAP-δ/α ratio induces the expression of the dual-specificity phosphatase 4 (DUSP4) in focal adhesions. By focusing on pathways up- and downstream of DUSP4 that are involved in the cell-extracellular matrix interaction, we show that a high GFAP-δ/α ratio equips glioma cells to better invade the brain. This study supports the hypothesis that glioma cells with a high GFAP-δ/α ratio are highly invasive and more malignant cells, thus making GFAP alternative splicing a potential therapeutic target.-Van Bodegraven, E. J., van Asperen, J. V., Sluijs, J. A., van Deursen, C. B. J., van Strien, M. E., Stassen, O. M. J. A., Robe, P. A. J., Hol, E. M. GFAP alternative splicing regulates glioma cell-ECM interaction in a DUSP4-dependent manner
    corecore