2,434 research outputs found
Reprogramming cancer cells to pluripotency
The epigenetic marks displayed by a cancer cell originate from two separate processes: The most prominent epigenetic signatures are associated with the cell of origin, i.e., the lineage and cell type identity imposed during development. The second set comprises those aberrant cancer-specific epigenetic marks that appear during tumor initiation or subsequent malignant progression. These are generally thought to associate with tumor-promoting pathways. As biochemical pathways regulating epigenetic mechanisms are potentially “druggable” and reversible, there is considerable interest in defining their roles in tumor genesis and growth, as they may represent therapeutic targets for treatment of human neoplasias. However, despite the potential importance of epigenetic modifications in human cancer, it has been difficult to determine when, where and how epigenetic disruptions occur, and if they have important functional roles in sustaining the malignant state
Overpressure preventing quartz cementation? - A reply
Chemical compaction and the relative importance of the pressure dissolution and illite-mica induced dissolution (IMID) models have remained a contentious issue, as is the role played by stress in chemical compaction. This paper offers further support and evidence as discussed in Stricker et al. (2016b), focusing on the reservoir quality of the Triassic Skagerrak Formation sandstones in the high pressure high temperature (HPHT) Central Graben, North Sea. The reply discusses alterative reservoir quality interpretations and comments as raised by Maast (2016). A series of theoretical and experimental studies, as well as field based evidence is presented providing strong support to the important role of stress (e.g. vertical effective stress) during chemical compaction. The evidence leads to the conclusion that the process of chemical compaction is stress and temperature driven and significantly enhanced by clay minerals, playing a catalytic role by increasing the width of diffusion pathway or by modifying the kinetics of the dissolution process
A New Limit on Signals of Lorentz Violation in Electrodynamics
We describe the results of an experiment to test for spacetime anisotropy
terms that might exist from Lorentz violations. The apparatus consists of a
pair of cylindrical superconducting cavity-stabilized oscillators operating in
the TM_{010} mode with one axis east-west and the other vertical. Spatial
anisotropy is detected by monitoring the beat frequency at the sidereal rate
and its first harmonic. We see no anisotropy to a part in 10^{13}. This puts a
comparable bound on four linear combinations of parameters in the general
Standard Model extension, and a weaker bound of <4 x 10^{-9} on three others.Comment: 4 pages, 3 figures, 2 table
A variable neurodegenerative phenotype with polymerase gamma mutation
mtDNA replication and repair, causes mitochondrial diseases including autosomal dominant
progressive external ophthalmoplegia (PEO),1 childhood hepato-encephalopathy (Alpers–
Huttenlocher syndrome), adult-onset spinocerebellar ataxia, and sensory nerve degeneration with
dysarthria and ophthalmoparesis (SANDO)
{IsMo-GAN}: {A}dversarial Learning for Monocular Non-Rigid {3D} Reconstruction
The majority of the existing methods for non-rigid 3D surface regression from monocular 2D images require an object template or point tracks over multiple frames as an input, and are still far from real-time processing rates. In this work, we present the Isometry-Aware Monocular Generative Adversarial Network (IsMo-GAN) - an approach for direct 3D reconstruction from a single image, trained for the deformation model in an adversarial manner on a light-weight synthetic dataset. IsMo-GAN reconstructs surfaces from real images under varying illumination, camera poses, textures and shading at over 250 Hz. In multiple experiments, it consistently outperforms several approaches in the reconstruction accuracy, runtime, generalisation to unknown surfaces and robustness to occlusions. In comparison to the state-of-the-art, we reduce the reconstruction error by 10-30% including the textureless case and our surfaces evince fewer artefacts qualitatively
Dev Dyn
Ror2 is a receptor tyrosine kinase mutated in the human syndromes Brachydactyly type B (BDB) and recessive Robinow syndrome (RS). In this study, we used the chick as a model to investigate the role of Ror2 in skeletogenesis and to elucidate the functional consequences of Ror2 mutations. For this purpose, we cloned chicken Ror2 and analyzed its expression pattern at various embryonic stages by in situ hybridization and immunolabeling. We document expression of cRor2 in several organs, including mesonephros, heart, nervous system, intestine and cartilage. The high conservation of expression when compared with the mouse underlines the validity of the chick as a model system. Using replication-competent retroviral vector-mediated overexpression, we analyzed the functional consequences of truncating BDB and RS mutations in the developing chick limb. Overexpression of Ror2 mutants led to a disturbance of growth plate architecture and a severe block of chondrocyte differentiation, demonstrating the functional importance of Ror2 in skeletogenesis
- …