54 research outputs found

    The p75NTR SIGNALING CASCADE MEDIATES MECHANICAL HYPERALGESIA INDUCED BY NERVE GROWTH FACTOR INJECTED INTO THE RAT HIND PAW

    Get PDF
    Nerve Growth Factor (NGF) augments excitability of isolated rat sensory neurons through activation of the p75 neurotrophin receptor (p75NTR) and its downstream sphingomyelin signaling cascade, wherein neutral sphingomyelinase(s) (nSMase), ceramide, and the atypical PKC (aPKC), PKMζ, are key mediators. Here we examined these same receptor-pathways in vivo for their role in mechanical hyperalgesia from exogenous NGF. Mechanical sensitivity was tested by the number of paw withdrawals in response to 10 stimuli (PWF = n/10) by a 4g von Frey hair (VFH, testing “allodynia”) and by 10g and 15g VFHs (testing “hyperalgesia”). NGF (500 ng/10 µl) injected into the male rat’s plantar hind paw induced long lasting ipsilateral mechanical hypersensitivity. Mechano-hypersensitivity, relative to baseline responses and to those of the contralateral paw, developed by 0.5–1.5h and remained elevated at least for 21–24h, Acute intraplantar pre-treatment with nSMase inhibitors, GSH or GW4869, prevented the acute hyperalgesia from NGF (at 1.5h) but not that at 24h. A single injection of N-acetyl sphingosine (C2-ceramide), simulating the ceramide produced by nSMase activity, induced ipsilateral allodynia that persisted for 24h, and transient hyperalgesia that resolved by 2h. Intraplantar injection of hydrolysis-resistant mPro-NGF, selective for the p75NTR over the TrkA receptor, gave very similar results to NGF and was susceptible to the same inhibitors. Hyperalgesia from both NGF and mPro-NGF was prevented by paw pre-injection with blocking antibodies to rat p75NTR receptor. Finally, intraplantar (1 day before NGF) injection of mPSI, the myristolated pseudosubstrate inhibitor of PKCζ/PKMζ, decreased the hyperalgesia resulting from NGF or C2-ceramide, although scrambled mPSI was ineffective. The findings indicate that mechano-hypersensitivity from peripheral NGF involves the sphingomyelin signaling cascade activated via p75NTR, and that a peripheral aPKC is essential for this sensitization

    The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: Modulation by the p75 neurotrophin receptor

    Get PDF
    The p75 neurotrophin receptor (p75NTR) and its activation of the sphingomyelin signaling cascade are essential for mechanical hypersensitivity resulting from locally injected nerve growth factor (NGF). Here the roles of the same effectors, and of the tropomyosin receptor kinase A (TrkA) receptor, are evaluated for thermal hyperalgesia from NGF. Sensitivity of rat hind paw plantar skin to thermal stimulation after local sub-cutaneous injection of NGF (500ng) was measured by the latency for paw withdrawal (PWL) from a radiant heat source. PWL was reduced from baseline values at 0.5-22h by ∼40% from that in naïve or vehicle-injected rats, and recovered to pre-injection levels by 48h. Local pre-injection with a p75NTR blocking antibody did not affect the acute thermal hyperalgesia (0.5-3.5h) but hastened its recovery so that it had reversed to baseline by 22h. In addition, GW4869 (2mM), an inhibitor of the neutral sphingomyelinase (nSMase) that is an enzyme in the p75NTR pathway, also failed to prevent thermal hyperalgesia. However, C2-ceramide, an analog of the ceramide produced by sphingomyelinase, did cause thermal hyperalgesia. Injection of an anti-TrkA antibody known to promote dimerization and activation of that receptor, independent of NGF, also caused thermal hyperalgesia, and prevented the further reduction of PWL from subsequently injected NGF. A non-specific inhibitor of tropomyosin receptor kinases, K252a, prevented thermal hyperalgesia from NGF, but not that from the anti-TrkA antibody. These findings suggest that the TrkA receptor has a predominant role in thermal hypersensitivity induced by NGF, while p75NTR and its pathway intermediates serve a modulatory role

    Peripheral Synthesis of an Atypical Protein Kinase C Mediates the Enhancement of Excitability and the Development of Mechanical Hyperalgesia Produced by Nerve Growth Factor

    Get PDF
    Nerve growth factor (NGF) plays a key role in the initiation as well as the prolonged heightened pain sensitivity of the inflammatory response. Previously, we showed that NGF rapidly augmented both the excitability of isolated rat sensory neurons and the mechanical sensitivity of the rat’s hind paw. The increase in excitability and sensitivity was blocked by the myristoylated pseudosubstrate inhibitor of atypical PKCs (mPSI), suggesting that an atypical PKC may play a key regulatory role in generating this heightened sensitivity. Our findings raised the question as to whether NGF directs changes in translational control, as suggested for long-lasting long-term potentiation (LTP), or whether NGF leads to the activation of an atypical PKC by other mechanisms. The current studies demonstrate that enhanced action potential (AP) firing produced by NGF was blocked by inhibitors of translation, but not transcription. In parallel, in vitro studies showed that NGF elevated the protein levels of PKMζ, which was also prevented by inhibitors of translation. Intraplantar injection of NGF in the rat hind paw produced a rapid and maintained increase in mechanical sensitivity whose onset was delayed by translation inhibitors. Established NGF-induced hypersensitivity could be transiently reversed by injection of rapamycin or mPSI. These results suggest that NGF produces a rapid increase in the synthesis of PKMζ protein in the paw that augments neuronal sensitivity and that the ongoing translational expression of PKMζ plays a critical role in generating as well as maintaining the heightened sensitivity produced by NGF

    Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (<it>Hexb </it>gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (<it>Hexb-/-</it>), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system.</p> <p>Results</p> <p>We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the <it>Hexb</it>+/- and <it>Hexb</it>-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of <it>Hexb</it>+/- and <it>Hexb</it>-/- mice showed normal myelin periods; however, <it>Hexb</it>-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of <it>Hexb-/- </it>mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the <it>Hexb</it>-/- mice (undetectable in <it>Hexb</it>+/-).</p> <p>Conclusion</p> <p>Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.</p
    corecore