72 research outputs found

    Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer

    Get PDF
    Background: Gene expression analysis of breast cancer largely relies on homogenized tissue samples. Due to the high degree of cellular and molecular heterogeneity of tumor tissues, bulk tissue-based analytical approaches can only provide very limited system-level information about different signaling mechanisms and cellular interactions within the complex tissue context. Methods: We describe an analytical approach using in situ sequencing (ISS), enabling highly multiplexed, spatially and morphologically resolved gene expression profiling. Ninety-one genes including prognostic and predictive marker profiles, as well as genes involved in specific cellular pathways were mapped within whole breast cancer tissue sections, covering luminal A/B-like, HER2-positive and triple negative tumors. Finally, all these features were combined and assembled into a molecular-morphological OncoMap for each tumor tissue. Findings: Our in situ approach spatially revealed intratumoral heterogeneity with regard to tumor subtype as well as to the OncotypeDX recurrence score and even uncovered areas of minor cellular subpopulations. Since ISS-resolved molecular profiles are linked to their histological context, a deeper analysis of the core and periphery of tumor foci enabled identification of specific gene expression patterns associated with these morphologically relevant regions. Interpretation: ISS generated OncoMaps represent useful tools to extend our general understanding of the biological processes behind tumor progression and can further support the identification of novel therapeutical targets as well as refine tumor diagnostics. Fund: Swedish Cancerfonden, UCAN, Vetenskapsrådet, Cancer Genomics Netherlands, Iris, Stig och Gerry Castenbäcks Stiftelse, BRECT, PCM Program, King Gustaf V Jubilee Fund, BRO, KI and Stockholm County Council, Alice Wallenberg Foundation

    Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis

    Get PDF
    Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed

    Endothelial-Mesenchymal Transition of Brain Endothelial Cells: Possible Role during Metastatic Extravasation

    Get PDF
    Cancer progression towards metastasis follows a defined sequence of events described as the metastatic cascade. For extravasation and transendothelial migration metastatic cells interact first with endothelial cells. Yet the role of endothelial cells during the process of metastasis formation and extravasation is still unclear, and the interaction between metastatic and endothelial cells during transendothelial migration is poorly understood. Since tumor cells are well known to express TGF-beta, and the compact endothelial layer undergoes a series of changes during metastatic extravasation (cell contact disruption, cytoskeletal reorganization, enhanced contractility), we hypothesized that an EndMT may be necessary for metastatic extravasation. We demonstrate that primary cultured rat brain endothelial cells (BEC) undergo EndMT upon TGF-beta 1 treatment, characterized by the loss of tight and adherens junction proteins, expression of fibronectin, beta 1-integrin, calponin and a-smooth muscle actin (SMA). B16/F10 cell line conditioned and activated medium (ACM) had similar effects: claudin-5 down-regulation, fibronectin and SMA expression. Inhibition of TGF-beta signaling during B16/F10 ACM stimulation using SB-431542 maintained claudin-5 levels and mitigated fibronectin and SMA expression. B16/F10 ACM stimulation of BECs led to phosphorylation of Smad2 and Smad3. SB-431542 prevented SMA up-regulation upon stimulation of BECs with A2058, MCF-7 and MDA-MB231 ACM as well. Moreover, B16/F10 ACM caused a reduction in trans-endothelial electrical resistance, enhanced the number of melanoma cells adhering to and transmigrating through the endothelial layer, in a TGF-beta-dependent manner. These effects were not confined to BECs: HUVECs showed TGF-beta-dependent SMA expression when stimulated with breast cancer cell line ACM. Our results indicate that an EndMT may be necessary for metastatic transendothelial migration, and this transition may be one of the potential mechanisms occurring during the complex phenomenon known as metastatic extravasation

    The Prognostic Value of Tumor-Infiltrating Neutrophils in Gastric Adenocarcinoma after Resection

    Get PDF
    Background: Several pieces of evidence indicate that tumor-infiltrating neutrophils (TINs) are correlated to tumor progression. In the current study, we explore the relationship between TINs and clinicopathological features of gastric adenocarcinoma patients. Furthermore, we investigated the prognostic value of TINs. Patients and Methods: The study was comprised of two groups, training group (115 patients) and test group (97 patients). Biomarkers (intratumoral CD15+ neutrophils) were assessed by immunohistochemistry. The relationship between clinicopathological features and patient outcome were evaluated using Cox regression and Kaplan-Meier analysis. Results: Immunohistochemical detection showed that the tumor-infiltrating neutrophils (TINs) in the training group ranged from 0.00–115.70 cells/high-power microscopic field (HPF) and the median number was 21.60 cells/HPF. Based on the median number, the patients were divided into high and low TINs groups. Chi-square test analysis revealed that the density of CD15+ TINs was positively associated with lymph node metastasis (p = 0.024), distance metastasis (p = 0.004) and UICC (International Union Against Cancer) staging (p = 0.028). Kaplan-Meier analysis showed that patients with a lower density of TINs had a better prognosis than patients with a higher density of TINs (p = 0.002). Multivariate Cox’s analysis showed that the density of CD15+ TINs was an independent prognostic factor for overall survival of gastric adenocarcinoma patients. Using another 97 patients as a test group and basing on the median number of TINs (21.60 cells/HPF) coming from th

    Extravasation of leukocytes in comparison to tumor cells

    Get PDF
    The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body

    Leptin and Adiponectin: new players in the field of tumor cell and leukocyte migration

    Get PDF
    Adipose tissue is no longer considered to be solely an energy storage, but exerts important endocrine functions, which are primarily mediated by a network of various soluble factors derived from fat cells, called adipocytokines. In addition to their responsibility to influence energy homeostasis, new studies have identified important pathways linking metabolism with the immune system, and demonstrating a modulatory role of adipocytokines in immune function. Additionally, epidemiological studies underline that obesity represents a significant risk factor for the development of cancer, although the exact mechanism of this relationship remains to be determined. Whereas a possible influence of adipocytokines on the proliferation of tumor cells is already known, new evidence has come to light elucidating a modulatory role of this signaling substances in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is a key feature to fight cancer cells, whereas the locomotion of tumor cells is a prerequisite for tumor formation and metastasis. We herein review the latest tumor biological findings on the role of the most prominent adipocytokines leptin and adiponectin, which are secreted by fat cells, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of adipocytokines in the regulation of migration of both leukocytes and tumor cells, and gives an insight in the underlying molecular mechanisms

    Engineered Models of Metastasis with Application to Study Cancer Biomechanics

    Get PDF
    Three-dimensional complex biomechanical interactions occur from the initial steps of tumor formation to the later phases of cancer metastasis. Conventional monolayer cultures cannot recapitulate the complex microenvironment and chemical and mechanical cues that tumor cells experience during their metastatic journey, nor the complexity of their interactions with other, noncancerous cells. As alternative approaches, various engineered models have been developed to recapitulate specific features of each step of metastasis with tunable microenvironments to test a variety of mechanistic hypotheses. Here the main recent advances in the technologies that provide deeper insight into the process of cancer dissemination are discussed, with an emphasis on three-dimensional and mechanical factors as well as interactions between multiple cell types
    corecore