7 research outputs found

    Na,K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation

    Full text link
    Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer’s disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer’s disease. Still, the physiological role of the monomeric form of Aβ42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aβ42 monomer, triggering Src kinase activation. The co-localization of Aβ42 with α1- and β1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aβ42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aβ42 with α1β1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aβ-induced Src kinase activation. Stimulatory effect of Aβ42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a Aβ42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by Aβ42 in the nervous system

    Characterization of Leishmania spp. causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil

    Get PDF
    In the State of Amazonas, American tegumentary leishmaniasis is endemic and presents a wide spectrum of clinical variability due to the large diversity of circulating species in the region. Isolates from patients in Manaus and its metropolitan region were characterized using monoclonal antibodies and isoenzymes belonging to four species of the parasite: Leishmania (Viannia) guyanensis, 73% (153/209); Leishmania (Viannia) braziliensis, 14% (30/209); Leishmania (Leishmania) amazonensis, 8% (17/209); and Leishmania (Viannia) naiffii, 4% (9/209). The most prevalent species was L. (V.) guyanensis. The principal finding of this study was the important quantity of infections involving more than one parasite species, representing 14% (29/209) of the total. The findings obtained in this work regarding the parasite are further highlighted by the fact that these isolates were obtained from clinical samples collected from single lesions

    Interaction Interface of Aβ<sub>42</sub> with Human Na,K-ATPase Studied by MD and ITC and Inhibitor Screening by MD

    No full text
    Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by progressive cognitive and memory dysfunction due to disruption of normal electrotonic properties of neurons and neuronal loss. The Na,K-ATPase interaction with beta amyloid (Aβ) plays an important role in AD pathogenesis. It has been shown that Na,K-ATPase activity in the AD brain was significantly lower than those in age-matched control brain. The interaction of Aβ42 with Na,K-ATPase and subsequent oligomerization leads to inhibition of the enzyme activity. In this study interaction interfaces between three common Aβ42 isoforms, and different conformations of human Na,K-ATPase (α1β1) have been obtained using molecular modeling, including docking and molecular dynamics (MD). Interaction sites of Na,K-ATPase with Aβ42 are localized between extracellular parts of α- and β- subunits and are practically identical for Na,K-ATPase at different conformations. Thermodynamic parameters for the formation of Na,K-ATPase:Aβ42 complex at different conformations acquired by isothermal titration calorimetry (ITC) are similar, which is in line with the data of molecular modeling. Similarity of Na,K-ATPase interaction interfaces with Aβ in all conformations allowed us to cross-screen potential inhibitors for this interaction and find pharmaceutical compounds that could block it

    Phosphorylation and Dephosphorylation of Beta-Amyloid Peptide in Model Cell Cultures: The Role of Cellular Protein Kinases and Phosphatases

    No full text
    Phosphorylation of beta-amyloid peptide (Aβ) at the Ser8 residue affects its neurotoxicity, metal-dependent oligomerisation, amyloidogenicity, and other pathogenic properties. Phosphorylated Aβ (pS8-Aβ) was detected in vivo in AD model mice and in the brains of patients with AD. However, the pS8-Aβ production and the regulation of its levels have not been previously studied in detail. In this paper, immunochemical methods together with radioactive labelling were used to study the Aβ phosphorylation by intracellular and surface protein kinases of HEK293 cells and brain endothelial cells (bEnd.3). It was found that HEK293 robustly phosphorylated Aβ, likely with contribution from casein kinase 2 (CK2), whereas in bEnd.3, the activity of Aβ phosphorylation was relatively low. Further, the study showed that both HEK293 and bEnd.3 could dephosphorylate pS8-Aβ, mainly due to the activity of protein phosphatases PP1 and PP2A. The Aβ dephosphorylation efficiency in bEnd.3 was three times higher than in HEK293, which correlated with the reduced abundance of pS8-Aβ in vascular amyloid deposits of patients with AD compared to senile plaques. These data suggest an important role of CK2, PP1, and PP2A as regulators of Aβ phosphorylation, and point to the involvement of the blood–brain barrier in the control of Aβ modification levels

    Na,K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation

    No full text
    Beta-amyloid (A&beta;) has a dual role, both as an important factor in the pathology of Alzheimer&rsquo;s disease and as a regulator in brain physiology. The inhibitory effect of A&beta;42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer&rsquo;s disease. Still, the physiological role of the monomeric form of A&beta;42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for A&beta;42 monomer, triggering Src kinase activation. The co-localization of A&beta;42 with &alpha;1- and &beta;1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM A&beta;42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of A&beta;42 with &alpha;1&beta;1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the A&beta;-induced Src kinase activation. Stimulatory effect of A&beta;42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a A&beta;42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by A&beta;42 in the nervous system

    Bifunctional Magnetite&ndash;Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction

    No full text
    Magnetite&ndash;gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 &plusmn; 3.0 Am2 kg&minus;1. We showcased the nanoparticles&rsquo; controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 &mu;g (Fe3O4) mL&minus;1. However, cell viability decrease after incubation with the nanoparticles (&ge;70 &mu;g mL&minus;1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies

    Bifunctional Magnetite–Gold Nanoparticles for Magneto-Mechanical Actuation and Cancer Cell Destruction

    No full text
    Magnetite–gold dumbbell nanoparticles are essential for biomedical applications due to the presence of two surfaces with different chemical natures and the potential combination of magnetic and plasmonic properties. Here, the remote actuation of Fe3O4-Au hybrid particles in a rotating (1 Hz, 7 mT), static (7 mT) or pulsed low-frequency (31 Hz, 175 mT, 30 s pulse/30 s pause) magnetic field was studied. The particles were synthesized by a high-temperature wet chemistry protocol and exhibited superparamagnetic properties with the saturation magnetization of 67.9 ± 3.0 Am2 kg−1. We showcased the nanoparticles’ controlled aggregation in chains (rotating/static magnetic field) in an aqueous solution and their disaggregation when the field was removed. The investigation of nanoparticle uptake by LNCaP and PC-3 cancer cells demonstrated that Fe3O4-Au hybrids mainly escaped endosomes and accumulated in the cytoplasm. A significant fraction of them still responded to a rotating magnetic field, forming short chains. The particles were not toxic to cells at concentrations up to 210 μg (Fe3O4) mL−1. However, cell viability decrease after incubation with the nanoparticles (≥70 μg mL−1) and exposure to a pulsed low-frequency magnetic field was found. We ascribe this effect to mechanically induced cell destruction. Overall, this makes Fe3O4-Au nanostructures promising candidates for intracellular actuation for future magneto-mechanical cancer therapies
    corecore