63 research outputs found

    Hair-Derived Exposome Exploration of Cardiometabolic Health: Piloting a Bayesian Multitrait Variable Selection Approach.

    Full text link
    peer reviewedCardiometabolic health is complex and characterized by an ensemble of correlated and/or co-occurring conditions including obesity, dyslipidemia, hypertension, and diabetes mellitus. It is affected by social, lifestyle, and environmental factors, which in-turn exhibit complex correlation patterns. To account for the complexity of (i) exposure profiles and (ii) health outcomes, we propose to use a multitrait Bayesian variable selection approach and identify a sparse set of exposures jointly explanatory of the complex cardiometabolic health status. Using data from a subset (N = 941 participants) of the nutrition, environment, and cardiovascular health (NESCAV) study, we evaluated the link between measurements of the cumulative exposure to (N = 33) pollutants derived from hair and cardiometabolic health as proxied by up to nine measured traits. Our multitrait analysis showed increased statistical power, compared to single-trait analyses, to detect subtle contributions of exposures to a set of clinical phenotypes, while providing parsimonious results with improved interpretability. We identified six exposures that were jointly explanatory of cardiometabolic health as modeled by six complementary traits, of which, we identified strong associations between hexachlorobenzene and trifluralin exposure and adverse cardiometabolic health, including traits of obesity, dyslipidemia, and hypertension. This supports the use of this type of approach for the joint modeling, in an exposome context, of correlated exposures in relation to complex and multifaceted outcomes

    Diagnostic Performance of Immunohistochemistry Compared to Molecular Techniques for Microsatellite Instability and p53 Mutation Detection in Endometrial Cancer

    No full text
    Molecular algorithms may estimate the risk of recurrence and death for patients with endometrial cancer (EC) and may impact treatment decisions. To detect microsatellite instabilities (MSI) and p53 mutations, immunohistochemistry (IHC) and molecular techniques are used. To select the most appropriate method, and to have an accurate interpretation of their results, knowledge of the performance characteristics of these respective methods is essential. The objective of this study was to assess the diagnostic performance of IHC versus molecular techniques (gold standard). One hundred and thirty-two unselected EC patients were enrolled in this study. Agreement between the two diagnostic methods was assessed using Cohen’s kappa coefficient. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of the IHC were calculated. For MSI status, the sensitivity, specificity, PPV and NPV were 89.3%, 87.3%, 78.1% and 94.1%, respectively. Cohen’s kappa coefficient was 0.74. For p53 status, the sensitivity, specificity, PPV, and NPV were 92.3%, 77.1%, 60.0% and 96.4%, respectively. Cohen’s kappa coefficient was 0.59. For MSI status, IHC presented a substantial agreement with the polymerase chain reaction (PCR) approach. For the p53 status, the moderate agreement observed between IHC and next generation sequencing (NGS) methods implies that they cannot be used interchangeably
    • …
    corecore