128 research outputs found

    Beating of the oscillations in the transport coefficients of a one-dimensionally periodically modulated two-dimensional electron gas in the presence of spin-orbit interaction

    Full text link
    Transport properties of a two-dimensional electron gas (2DEG) are studied in the presence of a perpendicular magnetic field BB, of a {\it weak} one-dimensional (1D) periodic potential modulation, and of the spin-orbit interaction (SOI) described only by the Rashba term. In the absence of the modulation the SOI mixes the spin-up and spin-down states of neighboring Landau levels into two new, unequally spaced energy branches. The levels of these branches broaden into bands in the presence of the modulation and their bandwidths oscillate with the field BB. Evaluated at the Fermi energy, the nn-th level bandwidth of each series has a minimum or vanishes at different values of the field BB. In contrast with the 1D-modulated 2DEG without SOI, for which only one flat-band condition applies, here there are two flat-band conditions that can change considerably as a function of the SOI strength α\alpha and accordingly influence the transport coefficients of the 2DEG. The phase and amplitude of the Weiss and Shubnikov-de Haas (SdH) oscillations depend on the strength α\alpha. For small values of α\alpha both oscillations show beating patterns. Those of the former are due to the independently oscillating bandwidths whereas those of the latter are due to modifications of the density of states, exhibit an even-odd filling factor transition, and are nearly independent of the modulation strength. For strong values of α\alpha the SdH oscillations are split in two

    Visibility diagrams and experimental stripe structure in the quantum Hall effect

    Full text link
    We analyze various properties of the visibility diagrams that can be used in the context of modular symmetries and confront them to some recent experimental developments in the Quantum Hall Effect. We show that a suitable physical interpretation of the visibility diagrams which permits one to describe successfully the observed architecture of the Quantum Hall states gives rise naturally to a stripe structure reproducing some of the experimental features that have been observed in the study of the quantum fluctuations of the Hall conductance. Furthermore, we exhibit new properties of the visibility diagrams stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil

    Magnetic Miniband Structure and Quantum Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present fully quantum-mechanical magnetotransport calculations for short-period lateral superlattices with one-dimensional electrostatic modulation. A non-perturbative treatment of both magnetic field and modulation potential proves to be necessary to reproduce novel quantum oscillations in the magnetoresistance found in recent experiments in the resistance component parallel to the modulation potential. In addition, we predict oscillations of opposite phase in the component perpendicular to the modulation not yet observed experimentally. We show that the new oscillations originate from the magnetic miniband structure in the regime of overlapping minibands.Comment: 6 pages with 4 figure

    Singular Effects of Spin-Flip Scattering on Gapped Dirac Fermions

    Full text link
    We investigate the effects of spin-flip scattering on the Hall transport and spectral properties of gapped Dirac fermions. We find that in the weak scattering regime, the Berry curvature distribution is dramatically compressed in the electronic energy spectrum, becoming singular at band edges. As a result the Hall conductivity has a sudden jump (or drop) of e2/2he^2/2h when the Fermi energy sweeps across the band edges, and otherwise is a constant quantized in units of e2/2he^2/2h. In parallel, spectral properties such as the density of states and spin polarization are also greatly enhanced at band edges. Possible experimental methods to detect these effects are discussed

    Two-dimensional electron gas in a uniform magnetic field in the presence of a delta-impurity

    Full text link
    The density of states and the Hall conductivity of a two-dimensional electron gas in a uniform magnetic field and in the presence of a delta impurity are exactly calculated using elementary field theoretic techniques. Although these results are not new, our treatment is explicitly gauge-invariant, and can be easily adapted to other problems involving a delta potential.Comment: 12+1 pages, 1 ps figure, REVTEX. Corrigendum adde

    Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States

    Full text link
    We calculate the current-voltage characteristic of a two-dimensional electron system (2DES) subjected to a magnetic field at strong electric fields. The interaction of electrons with piezoelectric acoustic phonons is considered as a major scattering mechanism governing the current-voltage characteristic. It is shown that at a sufficiently strong electric field corresponding to the Hall drift velocity exceeding the velocity of sound, the dissipative current exhibits an overshoot. The overshoot of the dissipative current can result in a breakdown of the absolute negative conductivity caused by microwave irradiation and, therefore, substantially effect the formation of the domain structures with the zero-resistance and zero-conductance states and supersonic electron streams.Comment: 5 pages, 4 figure

    Anomalous Hall effect in 2D Dirac band: link between Kubo-Streda formula and semiclassical Boltzmann equation approach

    Get PDF
    The anomalous Hall effect (AHE) is a consequence of spin-orbit coupling in a ferromagnetic metal and is related primarily to density-matrix response to an electric field that is off-diagonal in band index. For this reason disorder contributions to the AHE are difficult to treat systematically using a semi-classical Boltzmann equation approach, even when weak localization corrections are disregarded. In this article we explicitly demonstrate the equivalence of an appropriately modified semiclassical transport theory which includes anomalous velocity and side jump contributions and microscopic Kubo-Streda perturbation theory, with particular unconventional contributions in the semiclassical theory identified with particular Feynman diagrams when calculations are carried out in a band-eigenstate representation. The equivalence we establish is verified by explcit calculations for the case of the two-dimensional (2D) Dirac model Hamiltonian relevant to graphene.Comment: 17 pages, 13 figure

    Weak Localization and Integer Quantum Hall Effect in a Periodic Potential

    Full text link
    We consider magnetotransport in a disordered two-dimensional electron gas in the presence of a periodic modulation in one direction. Existing quasiclassical and quantum approaches to this problem account for Weiss oscillations in the resistivity tensor at moderate magnetic fields, as well as a strong modulation-induced modification of the Shubnikov-de Haas oscillations at higher magnetic fields. They do not account, however, for the operation at even higher magnetic fields of the integer quantum Hall effect, for which quantum interference processes are responsible. We then introduce a field-theory approach, based on a nonlinear sigma model, which encompasses naturally both the quasiclassical and quantum-mechanical approaches, as well as providing a consistent means of extending them to include quantum interference corrections. A perturbative renormalization-group analysis of the field theory shows how weak localization corrections to the conductivity tensor may be described by a modification of the usual one-parameter scaling, such as to accommodate the anisotropy of the bare conductivity tensor. We also show how the two-parameter scaling, conjectured as a model for the quantum Hall effect in unmodulated systems, may be generalized similarly for the modulated system. Within this model we illustrate the operation of the quantum Hall effect in modulated systems for parameters that are realistic for current experiments.Comment: 15 pages, 4 figures, ReVTeX; revised version with condensed introduction; two figures taken out; reference adde
    corecore