98 research outputs found

    Perspectives on Adipose Tissue, Chagas Disease and Implications for the Metabolic Syndrome

    Get PDF
    The contribution of adipose tissue an autocrine and endocrine organ in the pathogenesis of infectious disease and metabolic syndrome is gaining attention. Adipose tissue and adipocytes are one of the major targets of T. cruzi infection. Parasites are detected 300 days postinfection in adipose tissue. Infection of adipose tissue and cultured adipocytes triggered local expression of inflammatory mediators resulting in the upregulation of cytokine and chemokine levels. Adipose tissue obtained from infected mice display an increased infiltration of inflammatory cells. Adiponectin, an adipocyte specific protein, which exerts antiinflammatory effects, is reduced during the acute phase of infection. The antiinflammatory regulator peroxisome proliferator activated receptor-γ (PPAR-γ) is downregulated in infected cultured adipocytes and adipose tissue. T. cruzi infection is associated with an upregulation of signaling pathways such as MAPKs, Notch and cyclin D, and reduced caveolin-1 expression. Adiponectin null mice have a cardiomyopathy and thus we speculate that the T. cruzi-induced reduction in adiponectin contributes to the T. cruzi-induced cardiomyopathy. While T. cruzi infection causes hypoglycemia which correlates with mortality, hyperglycemia is associated with increased parasitemia and mortality. The T. cruzi-induced increase in macrophages in adipose tissue taken together with the reduction in adiponectin and the associated cardiomyopathy is reminiscent of the metabolic syndrome

    Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism.

    Get PDF
    OBJECTIVE: Brown adipose tissue (BAT) thermogenesis is critical in maintaining body temperature. The dorsomedial hypothalamus (DMH) integrates cutaneous thermosensory signals and regulates adaptive thermogenesis. Here, we study the function and synaptic connectivity of input from DMH cholinergic neurons to sympathetic premotor neurons in the raphe pallidus (Rpa). METHODS: In order to selectively manipulate DMH cholinergic neuron activity, we generated transgenic mice expressing channelrhodopsin fused to yellow fluorescent protein (YFP) in cholinergic neurons (choline acetyltransferase (ChAT)-Cre::ChR2-YFP) with the Cre-LoxP technique. In addition, we used an adeno-associated virus carrying the Cre recombinase gene to delete the floxed Chat gene in the DMH. Physiological studies in response to optogenetic stimulation of DMH cholinergic neurons were combined with gene expression and immunocytochemical analyses. RESULTS: A subset of DMH neurons are ChAT-immunopositive neurons. The activity of these neurons is elevated by warm ambient temperature. A phenotype-specific neuronal tracing shows that DMH cholinergic neurons directly project to serotonergic neurons in the Rpa. Optical stimulation of DMH cholinergic neurons decreases BAT activity, which is associated with reduced body core temperature. Furthermore, elevated DMH cholinergic neuron activity decreases the expression of BAT uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated receptor γ coactivator 1 α (Pgc1α) mRNAs, markers of BAT activity. Injection of M2-selective muscarinic receptor antagonists into the 4th ventricle abolishes the effect of optical stimulation. Single cell qRT-PCR analysis of retrogradely identified BAT-projecting neurons in the Rpa shows that all M2 receptor-expressing neurons contain tryptophan hydroxylase 2. In animals lacking the Chat gene in the DMH, exposure to warm temperature reduces neither BAT Ucp1 nor Pgc1α mRNA expression. CONCLUSION: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMH(ACh)-Rpa(5-HT) pathway may mediate physiological heat-defense responses to elevated environmental temperature.We thank Althea Cavanaugh and Licheng Wu for technical supports. This work was supported by NIDDK (RO1DK092246) to Y.-H.J. and New York obesity nutrition research center to J.H.J.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S2212877815000617

    The pancreatic β cell is a key site for mediating the effects of leptin on glucose homeostasis

    Get PDF
    SummaryThe hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic β cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in β cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence β cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity

    The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity

    Get PDF
    The osteoblast-secreted molecule osteocalcin favors insulin secretion, but how this function is regulated in vivo by extracellular signals is for now unknown. In this study, we show that leptin, which instead inhibits insulin secretion, partly uses the sympathetic nervous system to fulfill this function. Remarkably, for our purpose, an osteoblast-specific ablation of sympathetic signaling results in a leptin-dependent hyperinsulinemia. In osteoblasts, sympathetic tone stimulates expression of Esp, a gene inhibiting the activity of osteocalcin, which is an insulin secretagogue. Accordingly, Esp inactivation doubles hyperinsulinemia and delays glucose intolerance in ob/ob mice, whereas Osteocalcin inactivation halves their hyperinsulinemia. By showing that leptin inhibits insulin secretion by decreasing osteocalcin bioactivity, this study illustrates the importance of the relationship existing between fat and skeleton for the regulation of glucose homeostasis

    An Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72661/1/j.1749-6632.2009.05061.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72661/2/NYAS_5061_sm_SuppMat.pd

    Transcription factors in the development of medial hypothalamic structures

    Full text link

    Leptin Receptor Signaling Supports Cancer Cell Metabolism through Suppression of Mitochondrial Respiration in Vivo

    Full text link
    Obesity represents a risk factor for certain types of cancer. Leptin, a hormone predominantly produced by adipocytes, is elevated in the obese state. In the context of breast cancer, leptin derived from local adipocytes is present at high concentrations within the mammary gland. A direct physiological role of peripheral leptin action in the tumor microenvironment in vivo has not yet been examined. Here, we report that mice deficient in the peripheral leptin receptor, while harboring an intact central leptin signaling pathway, develop a fully mature ductal epithelium, a phenomenon not observed in db/db mice to date. In the context of the MMTV-PyMT mammary tumor model, the lack of peripheral leptin receptors attenuated tumor progression and metastasis through a reduction of the ERK1/2 and Jak2/STAT3 pathways. These are tumor cell-autonomous properties, independent of the metabolic state of the host. In the absence of leptin receptor signaling, the metabolic phenotype is less reliant on aerobic glycolysis and displays an enhanced capacity for β-oxidation, in contrast to nontransformed cells. Leptin receptor-free tumor cells display reduced STAT3 tyrosine phosphorylation on residue Y705 but have increased serine phosphorylation on residue S727, consistent with preserved mitochondrial function in the absence of the leptin receptor. Therefore, local leptin action within the mammary gland is a critical mediator, linking obesity and dysfunctional adipose tissue with aggressive tumor growth
    corecore