99 research outputs found

    Phase transitions in exactly solvable decorated model of localized Ising spins and itinerant electrons

    Full text link
    A hybrid lattice-statistical model of doubly decorated two-dimensional lattices, which have localized Ising spins at its nodal sites and itinerant electrons delocalized over decorating sites, is exactly solved with the help of a generalized decoration-iteration transformation. Under the assumption of a quarter filling of each couple of the decorating sites, the ground state constitutes either spontaneously long-range ordered ferromagnetic or ferrimagnetic phase in dependence on whether the ferromagnetic or antiferromagnetic interaction between the localized Ising spins and itinerant electrons is considered. The critical temperature of the spontaneously long-range ordered phases monotonically increases upon strengthening the ratio between the kinetic term and the Ising-type exchange interaction.Comment: 4 pages, 3 figures, presented at International Conference on Magnetism 2009 to be held on July 26-31 in Karlsruhe, Germany. submitted to J. Phys.: Conf. Se

    Spontaneous order in the highly frustrated spin-1/2 Ising-Heisenberg model on the triangulated Kagome lattice due to the Dzyaloshinskii-Moriya anisotropy

    Full text link
    The spin-1/2 Ising-Heisenberg model on the triangulated Kagome (triangles-in-triangles) lattice is exactly solved by establishing a precise mapping correspondence to the simple spin-1/2 Ising model on Kagome lattice. It is shown that the disordered spin liquid state, which otherwise occurs in the ground state of this frustrated spin system on assumption that there is a sufficiently strong antiferromagnetic intra-trimer interaction, is eliminated from the ground state by arbitrary but non-zero Dzyaloshinskii-Moriya anisotropy.Comment: 4 pages, 3 figures, to be presented at conference Highly Frustrated Magnetism, 7-12 September 2008, Braunschweig, German

    Effect of the Canting of Local Anisotropy Axes on Ground-State Properties of a Ferrimagnetic Chain with Regularly Alternating Ising and Heisenberg Spins

    Full text link
    The effect of the canting of local anisotropy axes on the ground-state phase diagram and magnetization of a ferrimagnetic chain with regularly alternating Ising and Heisenberg spins is exactly examined in an arbitrarily oriented magnetic field. It is shown that individual contributions of Ising and Heisenberg spins to the total magnetization basically depend on the spatial orientation of the magnetic field and the canting angle between two different local anisotropy axes of the Ising spins.Comment: 3 pages, 3 figure

    Thermodynamic properties of a tetramer ferro-ferro-antiferro-antiferromagnetic Ising-Heisenberg bond alternating chain as a model system for Cu(3-Clpy)2_2(N3_3)2_2

    Full text link
    Thermodynamic properties of a tetramer ferro-ferro-antiferro-antiferromagnetic Ising-Heisenberg bond alternating chain are investigated by the use of an exact mapping transformation technique. Exact results for the magnetization, susceptibility and specific heat in the zero as well as nonzero magnetic field are presented and discussed in detail. The results obtained from the mapping are compared with the relevant experimental data of Cu(3-Clpy)2_2(N3_3)2_2 (3-Clpy=3-Chloropyridine).Comment: 10 pages, 1 table, 14 figures, to be presented at CSMAG04 conferenc

    Multiple frustration-induced plateaus in a magnetization process of the mixed spin-1/2 and spin-3/2 Ising-Heisenberg diamond chain

    Full text link
    Magnetization process of the mixed spin-1/2 and spin-3/2 Ising-Heisenberg diamond chain is examined by combining three exact analytical techniques: Kambe projection method, decoration-iteration transformation and transfer-matrix method. Multiple frustration-induced plateaus in a magnetization process of this geometrically frustrated system are found provided that a relative ratio between the antiferromagnetic Heisenberg- and Ising-type interactions exceeds some particular value. By contrast, there is just a single magnetization plateau if the frustrating Heisenberg interaction is sufficiently small compared to the Ising one.Comment: 4 pages, 1 figure, presented at International Conference on Highly Frustrated Magnetism (HFM 2008), 7-12 September, 2008, Braunschweig, Germany, to be published in Journal of Physics: Conference Serie

    Spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions as the exactly soluble zero-field eight-vertex model

    Full text link
    The spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions is exactly solved by establishing a precise mapping relationship with the corresponding zero-field (symmetric) eight-vertex model. It is shown that the Ising-Heisenberg model with the ferromagnetic Heisenberg interaction exhibits a striking critical behavior, which manifests itself through re-entrant phase transitions as well as continuously varying critical exponents. The changes of critical exponents are in accordance with the weak universality hypothesis in spite of a peculiar singular behavior to emerge at a quantum critical point of the infinite order, which occurs at the isotropic limit of the Heisenberg interaction. On the other hand, the Ising-Heisenberg model with the antiferromagnetic Heisenberg interaction surprisingly exhibits less significant changes of both critical temperatures as well as critical exponents upon varying a strength of the exchange anisotropy in the Heisenberg interaction.Comment: 11 pages, 9 figure

    Potts and percolation models on bowtie lattices

    Full text link
    We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q=1q=1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff et al [J. Phys. A 39, 15083 (2006)]. For the q=2q=2 Potts model on the bowtie-A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of Potts model on the bowtie-A lattice with noninteger qq. Our numerical results, which are accurate up to 7 significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on the bowtie-A lattice, and the threshold is sc=0.5479148(7)s_c=0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on the bowtie-A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.Comment: 18 pages, 9 figures and 3 table
    corecore