21,513 research outputs found

    Fluorescein angiography compared to three-dimensional measurements by the retinal thickness analyzer in classic choroidal neovascularization

    Get PDF
    Purpose: To compare and correlate imaging of classic subfoveal choroidal neovascularization (CNV) with noninvasive 3-dimensional imaging by the retinal thickness analyzer (RTA) to conventional fluorescein angiography (FA). Methods: A total of 29 eyes of 29 consecutive patients with predominantly classic CNV eligible for photodynamic therapy underwent FA and RTA imaging. The FA dimensions of the CNV were measured independently by two graders. With the RTA, masked to FA the size of the CNV itself as imaged in 3-dimensional reconstruction, the size of significantly thickened retina overlying the CNV and the maximum retinal thickness were measured. Results: The mean diameter of the CNV determined from 3-dimensional RTA reconstructions showed an excellent correlation with measurements from FA (r = 0.91, p < 0.001). The area of retinal thickening was by a mean of 0.7 mm in diameter larger and correlated moderately well with the size of the CNV on FA (r = 0.65, p < 0.001). In contrast, there was no correlation between the absolute retinal thickness and the CNV size on FA. Conclusions: Noninvasive quantitative mapping of predominantly classic CNV by RTA is feasible and also allows 3-dimensional measurement of the lesion itself. The results correlate well with FA assessment but visualize different properties of the disease. Copyright (c) 2007 S. Karger AG, Basel

    Anomalously small wave tails in higher dimensions

    Full text link
    We consider the late-time tails of spherical waves propagating on even-dimensional Minkowski spacetime under the influence of a long range radial potential. We show that in six and higher even dimensions there exist exceptional potentials for which the tail has an anomalously small amplitude and fast decay. Along the way we clarify and amend some confounding arguments and statements in the literature of the subject.Comment: 13 page

    Soliton ratchets in homogeneous nonlinear Klein-Gordon systems

    Get PDF
    We study in detail the ratchet-like dynamics of topological solitons in homogeneous nonlinear Klein-Gordon systems driven by a bi-harmonic force. By using a collective coordinate approach with two degrees of freedom, namely the center of the soliton, X(t)X(t), and its width, l(t)l(t), we show, first, that energy is inhomogeneously pumped into the system, generating as result a directed motion; and, second, that the breaking of the time shift symmetry gives rise to a resonance mechanism that takes place whenever the width l(t)l(t) oscillates with at least one frequency of the external ac force. In addition, we show that for the appearance of soliton ratchets, it is also necesary to break the time-reversal symmetry. We analyze in detail the effects of dissipation in the system, calculating the average velocity of the soliton as a function of the ac force and the damping. We find current reversal phenomena depending on the parameter choice and discuss the important role played by the phases of the ac force. Our analytical calculations are confirmed by numerical simulations of the full partial differential equations of the sine-Gordon and ϕ4\phi^4 systems, which are seen to exhibit the same qualitative behavior. Our results are in agreement with recent experimental work on dissipation induced symmetry breaking.Comment: Minor corrections, several references added, accepted for publication in Chao

    Internal mode mechanism for collective energy transport in extended systems

    Get PDF
    We study directed energy transport in homogeneous nonlinear extended systems in the presence of homogeneous ac forces and dissipation. We show that the mechanism responsible for unidirectional motion of topological excitations is the coupling of their internal and translation degrees of freedom. Our results lead to a selection rule for the existence of such motion based on resonances that explains earlier symmetry analysis of this phenomenon. The direction of motion is found to depend both on the initial and the relative phases of the two harmonic drivings, even in the presence of noise.Comment: Final version, to appear in Physical Review Letter

    Forest structure, stand composition, and climate-growth response in montane forests of Jiuzhaigou National Nature Reserve, China.

    Get PDF
    Montane forests of western China provide an opportunity to establish baseline studies for climate change. The region is being impacted by climate change, air pollution, and significant human impacts from tourism. We analyzed forest stand structure and climate-growth relationships from Jiuzhaigou National Nature Reserve in northwestern Sichuan province, along the eastern edge of the Tibetan plateau. We conducted a survey to characterize forest stand diversity and structure in plots occurring between 2050 and 3350 m in elevation. We also evaluated seedling and sapling recruitment and tree-ring data from four conifer species to assess: 1) whether the forest appears in transition toward increased hardwood composition; 2) if conifers appear stressed by recent climate change relative to hardwoods; and 3) how growth of four dominant species responds to recent climate. Our study is complicated by clear evidence of 20(th) century timber extraction. Focusing on regions lacking evidence of logging, we found a diverse suite of conifers (Pinus, Abies, Juniperus, Picea, and Larix) strongly dominate the forest overstory. We found population size structures for most conifer tree species to be consistent with self-replacement and not providing evidence of shifting composition toward hardwoods. Climate-growth analyses indicate increased growth with cool temperatures in summer and fall. Warmer temperatures during the growing season could negatively impact conifer growth, indicating possible seasonal climate water deficit as a constraint on growth. In contrast, however, we found little relationship to seasonal precipitation. Projected warming does not yet have a discernible signal on trends in tree growth rates, but slower growth with warmer growing season climates suggests reduced potential future forest growth

    Disabled adults in sheltered employment: an assessment of dental needs and costs.

    Get PDF
    In this dental survey of a multi-disability sheltered industry, 233 adults were examined. When compared to adjusted North Carolina values, the workers exhibited poorer oral hygiene with higher rates and severity of periodontal disease. DMF-T totals were equal to those statewide; however, workers had more decayed and fewer missing teeth. Significant unmet restorative and prosthodontic needs were found. Treatment cost estimates at 1983 fees were 421percapita,withamedianfeeof421 per capita, with a median fee of 240

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiθe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation ttt\rightarrow-t and ψψ\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric

    Space use by resident and transient coyotes in an urban–rural landscape mosaic

    Get PDF
    Context. Coyotes (Canis latrans) have adapted successfully to human landscape alteration in the past 150 years and in recent decades have successfully moved into urban areas. While this causes concern about human–wildlife conflicts, research also suggests that coyotes tend to avoid humans and human activity in urban areas. For improving management, a better understanding of space use by coyotes is needed. Aims. To study how coyote social behaviour influences fine-scale space use in urban areas we present results from an extensive, multi-year GPS telemetry study (2005–13). The study area in coastal Rhode Island is a mosaic of rural, suburban and urban land use and coyotes have only recently arrived. Methods. We differentiated between two social classes: residents (individuals that have established a territory; n = 24) and transients (individuals that have no territory; n = 7). Space use was analysed using mixed effect models and detailed land-cover data. Key results. Coyotes tended to select for agricultural and densely vegetated land cover and against land used for housing and commerce. Pasture and cropland were preferred by residents and avoided by transients, especially at night, indicating the role of agricultural land as prime foraging habitat. Both groups selected densely vegetated land cover for daytime shelter sites. Transients selected for densely vegetated land cover both day and night, indicating use for both shelter and foraging. Resident coyotes avoided high- and medium-density housing more than transients. Conclusions. We interpret land-cover selection by resident coyotes as indicative of coyote habitat preference, while transients more often occupied marginal habitats that probably do not reflect their preferences. Differences in land cover selection between residents and transients suggest that transients have a corollary strategy to avoid residents. Implications. With cover and food appearing to be important drivers of space use, coexistence strategies can build on controlling food resources as well as on the tendency of coyotes to avoid humans. Nevertheless, transients, having the need to avoid territorial resident coyotes as well, show a reduced aversion to land cover with high human activity, creating a higher potential for human–wildlife conflicts

    Searching For Integrated Sachs-Wolfe Effect Beyond Temperature Anisotropies: CMB E-mode Polarization-Galaxy Cross Correlation

    Get PDF
    The cross-correlation between cosmic microwave background (CMB) temperature anisotropies and the large scale structure (LSS) traced by the galaxy distribution, or sources at different wavelengths, is now well known. This correlation results from the integrated Sachs-Wolfe (ISW) effect in CMB anisotropies generated at late times due to the dark energy component of the Universe. In a reionized universe, the ISW quadrupole rescatters and contributes to the large-scale polarization signal. Thus, in principle, the large-scale polarization bump in the E-mode should also be correlated with the galaxy distribution. Unlike CMB temperature-LSS correlation that peaks for tracers at low redshifts this correlation peaks mostly at redshifts between 1 and 3. Under certain conditions, mostly involving a low optical depth to reionization, if the Universe reionized at a redshift around 6, the cross polarization-source signal is marginally detectable, though challenging as it requires all-sky maps of the large scale structure at redshifts between 1 and 3. If the Universe reionized at a redshift higher than 10, it is unlikely that this correlation will be detectable even with no instrumental noise all-sky maps. While our estimates do not guarantee a detection unknown physics related to the dark energy as well as still uncertain issues related to the large angular scale CMB and polarization anisotropies may motivate attempts to measure this correlation using upcoming CMB polarization E-mode maps.Comment: 13 pages; 3 figure panels, JCAP submitte
    corecore