6 research outputs found

    Tunable Optics: Spectral Imaging and Surface Manipulation on Liquid Lenses

    No full text
    This thesis focusses on two aspects of tunable optics: Fabry-Pérot interferometers with a variable distance between their mirrors and electrowetting liquid lenses. The need for a device to detect child abuse has motivated us to design and build a camera that can detect the chemical composition of the upper skin layers of a bruise using a self-made Fabry-Pérot interferometer. The research described in the first part of this thesis has shown that wide-angle spectral imaging can be achieved with compact and cost-effective cameras using Fabry-Pérot interferometers. Designs with a full field of 90◦ in which the Fabry-Pérot interferometer is mounted either in front of an imaging system or behind a telecentric lens system are presented and analysed. The dependency of the spectral resolution on the numerical aperture of the lens system is derived and its value as a design criterion is shown. It is shown that the telecentric camera design is preferable over the collimated design for bruise imaging with a Fabry-Pérot interferometer.The idea to use a liquid lens for spectral imaging has directed the research towards a new concept of controlling surface waves on the surface of a liquid lens. We investigate and model surface waves because they decrease the imaging quality during fast focal switching. We propose a model that describes the surface modes appearing on a liquid lens and that predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using geometrical optics and Fresnel propagation, and the model is verified experimentally. The model of the surface oscillations is used to develop a technique to create aspheric surface shapes on commercially available electrowetting liquid lenses. The surface waves on the liquid lens are described by Bessel functions of which a linear combination can be used to create any circularly symmetrical aspheric lens shape at an instant of time. With these surface profiles, one can realise a large set of circularly symmetrical wavefronts and hence intensity distributions of beams transmitted by the lens. The necessary liquid lens actuation to achieve a desired shape is calculated via a Hankel transform and confirmed experimentally. The voltage signal can be repeated at video rate. Measurements taken with a Mach-Zehnder interferometer confirm the model of the surface waves. The capabilities and limitations of the proposed method are demonstrated using the examples of a Bessel surface, spherical aberration, an axicon, and a top hat structure.ImPhys/Optic

    Wide-angle spectral imaging using a Fabry-Perot interferometer

    No full text
    We show that wide-angle spectral imaging can be achieved with compact and cost-effective devices using Fabry-Pérot interferometers. Designs with a full field of view of 90°, in which the Fabry-Pérot interferometer is mounted either in front of an imaging lens system or behind a telecentric lens system, are presented and analysed. We show the dependency of the spectral resolution on the numerical aperture of the lens system and demonstrate its value as a design criterion.ImPhys/Imaging PhysicsApplied Science

    Study of surface modes on a vibrating electrowetting liquid lens

    No full text
    The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.ImPhys/Optic

    Creation of aspheric interfaces on an electrowetting liquid lens using surface oscillations

    No full text
    A technique to create aspheric surface shapes on commercially available electrowetting liquid lenses is demonstrated. Based on a previously published surface oscillation model a technique using a Hankel transform is proposed and tested experimentally. An alternating actuation voltage is applied to the liquid lens to stimulate surface oscillations, that temporarily add up to the desired surface shape. The voltage signal can be repeated at video rate. The measurements were taken with a Mach-Zehnder interferometer and confirm the previous results. The capabilities and limitations of the proposed method are demonstrated using the examples of a Bessel surface, spherical aberration, an axicon, and a top hat structure.ImPhys/Optic

    The influence of microgravity on Euglena gracilis as studied on Shenzhou 8

    No full text
    The German Aerospace Center (DLR) enabled German participation in the joint space campaign on the unmanned Shenzhou 8 spacecraft in November 2011. In this report, the effect of microgravity on Euglena gracilis cells is described. Custom-made dual compartment cell fixation units (containing cells in one chamber and fixative - RNA lysis buffer - in another one) were enclosed in a small container and placed in the Simbox incubator, which is an experiment support system. Cells were fixed by injecting them with fixative at different time intervals. In addition to stationary experiment slots, Simbox provides a 1g reference centrifuge. Cell fixation units were mounted in microgravity and 1g reference positions of Simbox. Two Simbox incubators were used, one for space flight and the other as ground reference. Cells were fixed soon after launch and shortly before return of the spaceship. Due to technical problems, only early in-flight samples (about 40min after launch microgravity and corresponding 1g reference) were fully mixed with fixative, therefore only data from those samples are presented. Transcription of several genes involved in signal transduction, oxidative stress defence, cell cycle regulation and heat shock responses was investigated with quantitative PCR. The data indicate that Euglena cells suffer stress upon short-term exposure to microgravity; various stress-induced genes were up-regulated. Of 32 tested genes, 18 were up-regulated, one down-regulated and the rest remained unaltered. These findings are in a good agreement with results from other research groups using other organisms.The German Aerospace Center (DLR) enabled German participation in the joint space campaign on the unmanned Shenzhou 8 spacecraft in November 2011. In this report, the effect of microgravity on Euglena gracilis cells is described. Custom-made dual compartment cell fixation units (containing cells in one chamber and fixative - RNA lysis buffer - in another one) were enclosed in a small container and placed in the Simbox incubator, which is an experiment support system. Cells were fixed by injecting them with fixative at different time intervals. In addition to stationary experiment slots, Simbox provides a 1g reference centrifuge. Cell fixation units were mounted in microgravity and 1g reference positions of Simbox. Two Simbox incubators were used, one for space flight and the other as ground reference. Cells were fixed soon after launch and shortly before return of the spaceship. Due to technical problems, only early in-flight samples (about 40min after launch microgravity and corresponding 1g reference) were fully mixed with fixative, therefore only data from those samples are presented. Transcription of several genes involved in signal transduction, oxidative stress defence, cell cycle regulation and heat shock responses was investigated with quantitative PCR. The data indicate that Euglena cells suffer stress upon short-term exposure to microgravity; various stress-induced genes were up-regulated. Of 32 tested genes, 18 were up-regulated, one down-regulated and the rest remained unaltered. These findings are in a good agreement with results from other research groups using other organisms
    corecore