21 research outputs found

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BackgroundHistologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD.MethodsThis was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0–4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0–2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.FindingsOf 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44–63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33–91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62–0·81) for histology, 0·76 (0·70–0·83) for LSM-VCTE, 0·74 (0·64–0·82) for FIB-4, and 0·70 (0·63–0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.InterpretationSimple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases

    Lipid Histiocytosis of the Gallbladder Neck Lymph Node

    No full text
    Lipid histiocytosis of the gallbladder neck lymph node is rarely reported nowadays. Two obese patients presented with gallbladder lithiasis detected on CT scan. The treatment consisted in coelioscopic cholecystectomy. Microscopy revealed subacute/chronic lithiasic cholecystitis and foci of vacuolated cells in the gallbladder neck lymph node. These cells were positive for CD68, CD31, S100 protein, and adipophilin and negative for cytokeratin and Alcian blue. In conclusion, we report lymph node lipid histiocytosis diagnosed microscopically after cholecystectomy. While such lesions may remain unidentified on imaging procedures, the microscopic analysis may require special stains and immunohistochemistry for ruling out adenocarcinoma metastasis

    Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis

    No full text
    The mechanisms that regulate cell death and inflammation play an important role in liver disease and cancer. Receptor-interacting protein kinase 1 (RIPK1) induces apoptosis and necroptosis via kinase-dependent mechanisms and exhibits kinase-independent prosurvival and proinflammatory functions. Here, we have used genetic mouse models to study the role of RIPK1 in liver homeostasis, injury, and cancer. While ablating either RIPK1 or RelA in liver parenchymal cells (LPCs) did not cause spontaneous liver pathology, mice with combined deficiency of RIPK1 and RelA in LPCs showed increased hepatocyte apoptosis and developed spontaneous chronic liver disease and cancer that were independent of TNF receptor 1 (TNFR1) signaling. In contrast, mice with LPC-specific knockout of Ripk1 showed reduced diethylnitrosamine-induced (DEN-induced) liver tumorigenesis that correlated with increased DEN-induced hepatocyte apoptosis. Lack of RIPK1 kinase activity did not inhibit DEN-induced liver tumor formation, showing that kinase-independent functions of RIPK1 promote DEN-induced hepatocarcinogenesis. Moreover, mice lacking both RIPK1 and TNFR1 in LPCs displayed normal tumor formation in response to DEN, demonstrating that RIPK1 deficiency decreases DEN-induced liver tumor formation in a TNFR1-dependent manner. Therefore, these findings indicate that RIPK1 cooperates with NF-kappa B signaling to prevent TNFR1-independent hepatocyte apoptosis and the development of chronic liver disease and cancer, but acts downstream of TNFR1 signaling to promote DEN-induced liver tumorigenesis

    Role of α1-adrenoceptor subtypes on corneal epithelial thickness and cell proliferation in mice

    No full text
    Adrenergic stimuli are important for corneal epithelial structure and healing. The purpose of the present study was to examine the hypothesis that the lack of a single alpha(1)-adrenoceptor (alpha(1)-AR) subtype affects corneal epithelial thickness and cell proliferation. Expression levels of alpha(1)-AR mRNA were determined in mouse cornea using real-time PCR. In mice devoid of one of the three alpha(1)-AR subtypes (alpha(1A)-AR(-/-), alpha(1B)-AR (-/-), alpha(1D)-AR (-/-)) and in wild-type controls, thickness of individual corneal layers, the number of epithelial cell layers, and average epithelial cell size were determined in cryosections. Endothelial cell density and morphology were calculated in corneal explants, and epithelial cell proliferation rate was determined with immunofluorescence microscopy. Moreover, the ultrastructure of the corneal epithelium was examined by transmission electron microscopy. Messenger RNA for all three alpha(1)-AR subtypes was expressed in whole cornea and in corneal epithelium from wild-type mice with a rank order of abundance of alpha(1A) >= alpha(1B) > alpha(1D). In contrast, no alpha(1)-AR mRNA was detected in the stroma, and only alpha(1B)-AR mRNA was found in the Descemet endothelial complex. Remarkably, corneal epithelial thickness and mean epithelial cell size were reduced in alpha(1A)-AR(-/-) mice. Our findings suggest that the alpha(1A)-AR exerts growth effects in mouse corneal epithelial cells

    p62 Promotes Survival and Hepatocarcinogenesis in Mice with Liver-Specific NEMO Ablation

    No full text
    SQSTM1/p62 is a multitasking protein that functions as an autophagy receptor, but also as a signaling hub regulating diverse cellular pathways. p62 accumulation in mice with autophagydeficient hepatocytes mediates liver damage and hepatocarcinogenesis through Nrf2 overactivation, yet the role of the p62-Keapl-Nrf2 axis in cell death and hepatocarcinogenesis in the absence of underlying autophagy defects is less clear. Here, we addressed the role of p62 and Nrf2 activation in a chronic liver disease model, namely mice with liver parenchymal cell-specific knockout of NEMO (NEMOLPC-KO), in which we demonstrate that they show no inherent autophagy impairment. Unexpectedly, systemic p62 ablation aggravated the phenotype and caused early postnatal lethality in NEMO(LPC-KO )mice. Expression of a p62 mutant (p624Ex2-5), which retains the ability to form aggregates and activate Nrf2 signaling, did not cause early lethality, but exacerbated hepatocarcinogenesis in these mice. Our immunohistological and molecular analyses showed that the increased tumor burden was only consistent with increased expression/stability of p624Ex2-5 driving Nrf2 hyperactivation, but not with other protumorigenic functions of p62, such as mTOR activation, cMYC upregulation or increased fibrosis. Surprisingly, forced activation of Nrf2 per se did not increase liver injury or tumor burden in NEMOLPC-KO mice, suggesting that autophagy impairment is a necessary prerequisite to unleash the Nrf2 oncogenic potential in mice with autophagy-competent hepatocytes.ISSN:2072-669

    Clinicopathological Significance of Syndecan-1 in Cholangiocarcinoma: A Study Based on Immunohistochemistry and Public Sequencing Data

    No full text
    Background: Syndecan-1 (CD138; SDC1) is a heparan sulfate proteoglycan that has been attributed a key role in cancer progression in ductal adenocarcinoma of the pancreas. We therefore aimed to investigate the role of syndecan-1 in cholangiocarcinoma. Methods: We analyzed syndecan-1 expression in a large, clinicopathologically well-characterized collective of 154 intrahepatic cholangiocarcinoma, 221 extrahepatic cholangiocarcinomas, and 95 gallbladder carcinomas as well as respective normal tissues and precursor lesions by immunohistochemistry with digital image analysis and correlated with recurrence-free survival and prognostic markers. Furthermore, we conducted an analysis of cancer genes in the cholangiocarcinoma cohort of The Cancer Genome Atlas (TCGA). Results: During cholangiocarcinogenesis, syndecan-1-expression decreased when compared to normal bile ducts and biliary intraepithelial neoplasia; however, syndecan-1 levels were found to be elevated in lymph node metastases. In the TCGA cohort, high mRNA SDC1 levels were associated with poor prognosis in intrahepatic cholangiocarcinoma. However, in our large cohort, the immunohistochemical syndecan-1 expression did not significantly correlate with recurrence-free survival. Conclusions: Syndecan-1 was found to be downregulated during cholangiocarcinogenesis, yet we could not show significant effects on prognosis on protein level. Further analyses are needed to further depict its specific role

    Lipid Droplet-Associated Proteins Perilipin 1 and 2: Molecular Markers of Steatosis and Microvesicular Steatotic Foci in Chronic Hepatitis C

    No full text
    Chronic infection with hepatitis C (HCV) is a major risk factor in the development of cirrhosis and hepatocellular carcinoma. Lipid metabolism plays a major role in the replication and deposition of HCV at lipid droplets (LDs). We have demonstrated the importance of LD-associated proteins of the perilipin family in steatotic liver diseases. Using a large collection of 231 human liver biopsies with HCV, perilipins 1 and 2 have been localized to LDs of hepatocytes that correlate with the degree of steatosis and specific HCV genotypes, but not significantly with the HCV viral load. Perilipin 1- and 2-positive microvesicular steatotic foci were observed in 36% of HCV liver biopsies, and also in chronic hepatitis B, autoimmune hepatitis and mildly steatotic or normal livers, but less or none were observed in normal livers of younger patients. Microvesicular steatotic foci did not frequently overlap with glycogenotic/clear cell foci as determined by PAS stain in serial sections. Steatotic foci were detected in all liver zones with slight architectural disarrays, as demonstrated by immunohistochemical glutamine synthetase staining of zone three, but without elevated Ki67-proliferation rates. In conclusion, microvesicular steatotic foci are frequently found in chronic viral hepatitis, but the clinical significance of these foci is so far not clear

    Key Enzymes in Pyrimidine Synthesis, CAD and CPS1, Predict Prognosis in Hepatocellular Carcinoma

    No full text
    Patients with hepatocellular carcinoma (HCC) have a highly variable clinical course. Therefore, there is an urgent need to identify new prognostic markers to determine prognosis and select specific therapies. Recently, it has been demonstrated that dysregulation of the urea cycle (UC) is a common phenomenon in multiple types of cancer. Upon UC dysregulation, nitrogen is diverted toward the multifunctional enzyme carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD), and increases pyrimidine synthesis. In this study, we investigated the role of CAD and carbamoyl-phosphate synthetase 1 (CPS1), a rate-limiting enzyme of the UC highly expressed in hepatocytes, in HCC. We created a tissue microarray to analyze expression of both enzymes by immunohistochemistry in a large and well-characterized overall cohort of 871 HCCs of 561 patients that underwent surgery. CAD was induced in recurrent HCCs, and high expression predicted shorter overall survival. CPS1 was downregulated in HCC and further reduced in recurrent tumors and distant metastases. Additionally, low CPS1 was associated with short overall survival. A combined score of both enzymes was an independent prognostic marker in a multivariate Cox regression model (HR = 1.37, 95% confidence interval 1.06–1.75, p = 0.014). Inhibition of pyrimidine synthesis may represent a novel therapeutic strategy for HCC

    Reduced Lipid Peroxidation Predicts Unfavorable Prognosis in Hepatocellular Carcinoma, but Not Intrahepatic Cholangiocarcinoma

    No full text
    Primary liver cancer, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), remains a significant contributor to cancer-related mortality worldwide. Oxidative stress and lipid peroxidation play a key role in chronic liver diseases and have been shown to be pivotal for tumor initiation and progression. 4-hydroxy-nonenal (4-HNE), one of the major mediators of oxidative stress and a well-established biomarker for lipid peroxidation, can act as a signal transducer, inducing inflammation and exerting carcinogenic effects. However, the role of 4-HNE in primary liver cancer remains poorly explored. In this study, we investigated 4-HNE levels in 797 liver carcinomas, including 561 HCC and 236 iCCA, by immunohistochemistry. We then correlated 4-HNE levels with comprehensive clinical data and survival outcomes. In HCC, lower expression levels of 4-HNE were associated with vascular invasion, a high tumor grade, a macrotrabecular-massive HCC subtype, and poor overall survival. Concerning iCCA, large duct iCCA showed significantly higher 4-HNE levels when compared to small duct iCCA. Yet, in iCCA, 4-HNE levels did not correlate with known prognostic parameters or survival outcomes. To conclude, in HCC but not in iCCA, low amounts of 4-HNE predict unfavorable survival outcomes and are associated with aggressive tumor behavior. These findings provide insights into the role of 4-HNE in liver cancer progression and may enable novel therapeutic strategies

    Constitutive Occurrence of E:N-cadherin Heterodimers in Adherens Junctions of Hepatocytes and Derived Tumors

    No full text
    Cell&ndash;cell junctions are pivotal for embryogenesis and tissue homeostasis but also play a major role in tumorigenesis, tumor invasion, and metastasis. E-cadherin (CDH1) and N-cadherin (CDH2) are two adherens junction&rsquo;s transmembrane glycoproteins with tissue-specific expression patterns in epithelial and neural/mesenchymal cells. Aberrant expression has been implicated in the process of epithelial&ndash;mesenchymal transition (EMT) in malignant tumors. We could hitherto demonstrate cis-E:N-cadherin heterodimer in endoderm-derived cells. Using immunoprecipitation in cultured cells of the line PLC as well as in human hepatocellular carcinoma (HCC)-lysates, we isolated E-N-cadherin heterodimers in a complex with the plaque proteins &alpha;- and &beta;-catenin, plakoglobin, and vinculin. In confocal laser scanning microscopy, E-cadherin co-localized with N-cadherin at the basolateral membrane of normal hepatocytes, hepatocellular adenoma (HCA), and in most cases of HCC. In addition, we analyzed E- and N-cadherin expression via immunohistochemistry in a large cohort of 868 HCCs from 570 patients, 25 HCA, and respective non-neoplastic liver tissue, and correlated our results with multiple prognostic markers. While E- or N-cadherin were similarly expressed in tumor sites with vascular invasion or HCC metastases, HCC with vascular encapsulated tumor clusters (VETC) displayed slightly reduced E-cadherin, and slightly increased N-cadherin expression. Analyzing The Cancer Genome Atlas patient cohort, we found that reduced mRNA levels of CDH1, but not CDH2 were significantly associated with unfavorable prognosis; however, in multivariate analysis, CDH1 did not correlate with prognosis. In summary, E- and N-cadherin are specific markers for hepatocytes and derived HCA and HCC. E:N-cadherin heterodimers are constitutively expressed in the hepatocytic lineage and only slightly altered in malignant progression, thereby not complying with the concept of EMT
    corecore