118 research outputs found

    Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems

    Get PDF
    A relationship between the time scales of quantum coherence loss and short-time solvent response for a solute/bath system is derived for a Gaussian wave packet approximation for the bath. Decoherence and solvent response times are shown to be directly proportional to each other, with the proportionality coefficient given by the ratio of the thermal energy fluctuations to the fluctuations in the system-bath coupling. The relationship allows the prediction of decoherence times for condensed phase chemical systems from well developed experimental methods.Comment: 10 pages, no figures, late

    Nodal domains on quantum graphs

    Full text link
    We consider the real eigenfunctions of the Schr\"odinger operator on graphs, and count their nodal domains. The number of nodal domains fluctuates within an interval whose size equals the number of bonds BB. For well connected graphs, with incommensurate bond lengths, the distribution of the number of nodal domains in the interval mentioned above approaches a Gaussian distribution in the limit when the number of vertices is large. The approach to this limit is not simple, and we discuss it in detail. At the same time we define a random wave model for graphs, and compare the predictions of this model with analytic and numerical computations.Comment: 19 pages, uses IOP journal style file

    Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: The potential energy landscape ensemble

    Full text link
    In principle, all of the dynamical complexities of many-body systems are encapsulated in the potential energy landscapes on which the atoms move - an observation that suggests that the essentials of the dynamics ought to be determined by the geometry of those landscapes. But what are the principal geometric features that control the long-time dynamics? We suggest that the key lies not in the local minima and saddles of the landscape, but in a more global property of the surface: its accessible pathways. In order to make this notion more precise we introduce two ideas: (1) a switch to a new ensemble that removes the concept of potential barriers from the problem, and (2) a way of finding optimum pathways within this new ensemble. The potential energy landscape ensemble, which we describe in the current paper, regards the maximum accessible potential energy, rather than the temperature, as a control variable. We show here that while this approach is thermodynamically equivalent to the canonical ensemble, it not only sidesteps the idea of barriers, it allows us to be quantitative about the connectivity of a landscape. We illustrate these ideas with calculations on a simple atomic liquid and on the Kob-Andersen model of a glass-forming liquid, showing, in the process, that the landscape of the Kob-Anderson model appears to have a connectivity transition at the landscape energy associated with its mode-coupling transition. We turn to the problem of finding the most efficient pathways through potential energy landscapes in our companion paper.Comment: 43 pages, 7 figure

    Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids

    Full text link
    We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to calculations of the velocity autocorrelation function Z(t)Z(t) and diffusion coefficient DD. The model trajectory consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential valley, interspersed with position- and velocity-conserving transits to similar adjacent valleys. The resulting predictions for Z(t)Z(t) and DD agree remarkably well with MD simulations of Na at up to almost three times its melting temperature. Two independent processes in the model relax velocity autocorrelations: (a) dephasing due to the presence of many frequency components, which operates at all temperatures but which produces no diffusion, and (b) the transit process, which increases with increasing temperature and which produces diffusion. Because the model provides a single-atom trajectory in real space and time, including transits, it may be used to calculate all single-atom correlation functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and cond-mat/0002058 combined Minor changes made to coincide with published versio

    Spectral Statistics of Instantaneous Normal Modes in Liquids and Random Matrices

    Full text link
    We study the statistical properties of eigenvalues of the Hessian matrix H{\cal H} (matrix of second derivatives of the potential energy) for a classical atomic liquid, and compare these properties with predictions for random matrix models (RMM). The eigenvalue spectra (the Instantaneous Normal Mode or INM spectra) are evaluated numerically for configurations generated by molecular dynamics simulations. We find that distribution of spacings between nearest neighbor eigenvalues, s, obeys quite well the Wigner prediction sexp(−s2)s exp(-s^2), with the agreement being better for higher densities at fixed temperature. The deviations display a correlation with the number of localized eigenstates (normal modes) in the liquid; there are fewer localized states at higher densities which we quantify by calculating the participation ratios of the normal modes. We confirm this observation by calculating the spacing distribution for parts of the INM spectra with high participation ratios, obtaining greater conformity with the Wigner form. We also calculate the spectral rigidity and find a substantial dependence on the density of the liquid.Comment: To appear in Phys. Rev. E; 10 pages, 6 figure

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    Quantum Fluctuations Driven Orientational Disordering: A Finite-Size Scaling Study

    Full text link
    The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-rotor model in the low temperature regime. The phase diagram of the model is first analyzed within the mean-field approximation. This predicts at T=0T=0 a phase transition from the ordered to the disordered state when the strength of quantum fluctuations, characterized by the rotational constant Θ\Theta, exceeds a critical value ΘcMF\Theta_{\rm c}^{MF}. As a function of temperature, mean-field theory predicts a range of values of Θ\Theta where the system develops long-range order upon cooling, but enters again into a disordered state at sufficiently low temperatures (reentrance). The model is further studied by means of path integral Monte Carlo simulations in combination with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a genuine long-range order.Comment: 27 pages, 8 figures, RevTe

    Local Variational Principle

    Full text link
    A generalization of the Gibbs-Bogoliubov-Feynman inequality for spinless particles is proven and then illustrated for the simple model of a symmetric double-well quartic potential. The method gives a pointwise lower bound for the finite-temperature density matrix and it can be systematically improved by the Trotter composition rule. It is also shown to produce groundstate energies better than the ones given by the Rayleigh-Ritz principle as applied to the groundstate eigenfunctions of the reference potentials. Based on this observation, it is argued that the Local Variational Principle performs better than the equivalent methods based on the centroid path idea and on the Gibbs-Bogoliubov-Feynman variational principle, especially in the range of low temperatures.Comment: 15 pages, 5 figures, one more section adde
    • …
    corecore