16 research outputs found

    The Role of Interferon Gamma in Melanocyte Clearance During Vitiligo

    Get PDF
    Vitiligo is an autoimmune disease in which CD8+ T cells selectively destroy melanocytes, leading to a patchy, disfiguring depigmentation of the skin. Our group and others have highlighted the central role of IFN-γ-dependent chemokines in the progression of disease; however, IFN-γ is also reported to have pleiotropic effects on melanocyte biology. We examined whether IFN-γ has a direct role in melanocyte killing. We tested the T-cell effector functions IFN-γ, Fas ligand and perforin by deleting them from autoreactive T cells used to induce vitiligo in mice. We found that disease incidence, disease severity and T cell accumulation in the skin was reduced in mice receiving adoptive transfer of either IFN-γ deficient or Fas ligand deficient gp100-specific T cells; however, perforin was dispensable and led to increased disease scores and T cell accumulation. To determine how melanocytes are affected by IFN-γ signaling during vitiligo, we performed single-cell RNA-sequencing on suction blister biopsies obtained from vitiligo and healthy subjects. We discovered that integrin expression and TGFb2 signaling was decreased only in lesional melanocyte transcriptomes. Moreover, melanocytes appear to participate in their own demise by increasing HLA expression and recruiting effector cells through the chemotactic ligand CCL18. The loss of melanocyte retention factors may explain their clean disappearance from the skin during keratinocyte turnover. Taken together, we believe IFN-γ production by autoreactive T cells in the skin leads to clean loss of melanocytes by downregulation of melanocyte retention factors and by increasing their potential to be detected by effector cells during vitiligo

    Understanding mechanisms of autoimmunity through translational research in vitiligo

    No full text
    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-gamma-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible

    Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity

    No full text
    BACKGROUND: Vitiligo is an autoimmune disease of the skin with limited treatment options; there is an urgent need to identify and validate biomarkers of disease activity to support vitiligo clinical studies. OBJECTIVE: To investigate potential biomarkers of disease activity directly in the skin of vitiligo subjects and healthy subjects. METHODS: Patient skin was sampled via a modified suction-blister technique, allowing for minimally invasive, objective assessment of cytokines and T-cell infiltrates in the interstitial skin fluid. Potential biomarkers were first defined and later validated in separate study groups. RESULTS: In screening and validation, CD8+ T-cell number and C-X-C motif chemokine ligand (CXCL) 9 protein concentration were significantly elevated in active lesional compared to nonlesional skin. CXCL9 protein concentration achieved greater sensitivity and specificity by receiver operating characteristic analysis. Suction blistering also allowed for phenotyping of the T-cell infiltrate, which overwhelmingly expresses C-X-C motif chemokine receptor 3. LIMITATIONS: A small number of patients were enrolled for the study, and only a single patient was used to define the treatment response. CONCLUSION: Measuring CXCL9 directly in the skin might be effective in clinical trials as an early marker of treatment response. Additionally, use of the modified suction-blister technique supports investigation of inflammatory skin diseases using powerful tools like flow cytometry and protein quantification

    Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure

    No full text
    BACKGROUND: Vitiligo is an autoimmune disease in which cutaneous depigmentation occurs. Existing therapies are often inadequate. Prior reports have shown benefit of the Janus kinase (JAK) inhibitors. OBJECTIVE: To evaluate the efficacy of the JAK 1/3 inhibitor tofacitinib in the treatment of vitiligo. METHOD: This is a retrospective case series of 10 consecutive patients with vitiligo treated with tofacitinib. Severity of disease was assessed by body surface area of depigmentation. RESULTS: Ten consecutive patients were treated with tofacitinib. Five patients achieved some repigmentation at sites of either sunlight exposure or low-dose narrowband ultraviolet B phototherapy. Suction blister sampling revealed that the autoimmune response was inhibited during treatment in both responding and nonresponding lesions, suggesting that light rather than immunosuppression was primarily required for melanocyte regeneration. LIMITATIONS: Limitations include the small size of the study population, retrospective nature of the study, and lack of a control group. CONCLUSION: Treatment of vitiligo with JAK inhibitors appears to require light exposure. In contrast to treatment with phototherapy alone, repigmentation during treatment with JAK inhibitors may require only low-level light. Maintenance of repigmentation may be achieved with JAK inhibitor monotherapy. These results support a model wherein JAK inhibitors suppress T cell mediators of vitiligo and light exposure is necessary for stimulation of melanocyte regeneration. Inc. All rights reserved

    Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo

    No full text
    Tissue resident memory T cells (Trm) form in the skin in vitiligo and persist to maintain disease, as white spots often recur rapidly after discontinuing therapy. We and others have recently described melanocyte-specific autoreactive Trm in vitiligo lesions. Here, we characterize the functional relationship between Trm and recirculating memory T cells (Tcm) in our vitiligo mouse model. We found that both Trm and Tcm sensed autoantigen in the skin long after stabilization of disease, producing IFN-gamma, CXCL9, and CXCL10. Blockade of Tcm recruitment to the skin with FTY720 or depletion of Tcm with low-dose Thy1.1 antibody reversed disease, indicating that Trm cooperate with Tcm to maintain disease. Taken together, our data provide characterization of skin memory T cells in vitiligo, demonstrate that Trm and Tcm work together during disease, and indicate that targeting their survival or function may provide novel, durable treatment options for patients

    Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo

    No full text
    Vitiligo is an autoimmune disease of the skin mediated by CD8(+) T cells that kill melanocytes and create white spots. Skin lesions in vitiligo frequently return after discontinuing conventional treatments, supporting the hypothesis that autoimmune memory is formed at these locations. We found that lesional T cells in mice and humans with vitiligo display a resident memory (TRM) phenotype, similar to those that provide rapid, localized protection against reinfection from skin and mucosal-tropic viruses. Interleukin-15 (IL-15)-deficient mice reportedly have impaired TRM formation, and IL-15 promotes TRM function ex vivo. We found that both human and mouse TRM express the CD122 subunit of the IL-15 receptor and that keratinocytes up-regulate CD215, the subunit required to display the cytokine on their surface to promote activation of T cells. Targeting IL-15 signaling with an anti-CD122 antibody reverses disease in mice with established vitiligo. Short-term treatment with anti-CD122 inhibits TRM production of interferon-gamma (IFNgamma), and long-term treatment depletes TRM from skin lesions. Short-term treatment with anti-CD122 can provide durable repigmentation when administered either systemically or locally in the skin. On the basis of these data, we propose that targeting CD122 may be a highly effective and even durable treatment strategy for vitiligo and other tissue-specific autoimmune diseases involving TRM
    corecore