106 research outputs found
Stealth Supersymmetry
We present a broad class of supersymmetric models that preserve R-parity but
lack missing energy signatures. These models have new light particles with
weak-scale supersymmetric masses that feel SUSY breaking only through couplings
to the MSSM. This small SUSY breaking leads to nearly degenerate fermion/boson
pairs, with small mass splittings and hence small phase space for decays
carrying away invisible energy. The simplest scenario has low-scale SUSY
breaking, with missing energy only from soft gravitinos. This scenario is
natural, lacks artificial tunings to produce a squeezed spectrum, and is
consistent with gauge coupling unification. The resulting collider signals will
be jet-rich events containing false resonances that could resemble signatures
of R-parity violation. We discuss several concrete examples of the general
idea, and emphasize gamma + jet + jet resonances, displaced vertices, and very
large numbers of b-jets as three possible discovery modes.Comment: 12 pages, 4 figure
The LHC Phenomenology of Vectorlike Confinement
We investigate in detail the LHC phenomenology of "vectorlike confinement",
where the Standard Model is augmented by a new confining gauge interaction and
new light fermions that carry vectorlike charges under both the Standard Model
and the new gauge group. If the new interaction confines at the TeV scale, this
framework gives rise to a wide range of exotic collider signatures such as the
production of a vector resonance that decays to a pair of collider-stable
charged massive particles (a "di-CHAMP" resonance), to a pair of
collider-stable massive colored particles (a "di-R-hadron resonance), to
multiple photons, s and s via two intermediate scalars, and/or to
multi-jet final states. To study these signals at the LHC, we set up two
benchmark models: one for the di-CHAMP and multi-photon signals, and the other
for the di-R-hadron and multijet signals. For the di-CHAMP/multi-photon model,
Standard Model backgrounds are negligible, and we show that a full
reconstruction of the spectrum is possible, providing powerful evidence for
vectorlike confinement. For the di-R-hadron/multijet model, we point out that
in addition to the di-R-hadron signal, the rate of the production of four
R-hadrons can also be sizable at the LHC. This, together with the multi-jet
signals studied in earlier work, makes it possible to single out vectorlike
confinement as the underlying dynamics.Comment: 32 pages, 28 figures. Several typos fixed, one paragraph added
elaborating choice of benchmarks. Version accepted by JHEP
Long-Lived Neutralino NLSPs
We investigate the collider signatures of heavy, long-lived, neutral
particles that decay to charged particles plus missing energy. Specifically, we
focus on the case of a neutralino NLSP decaying to Z and gravitino within the
context of General Gauge Mediation. We show that a combination of searches
using the inner detector and the muon spectrometer yields a wide range of
potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5
mm. We further show that events from Z(l+l-) can be used for detailed kinematic
reconstruction, leading to accurate determinations of the neutralino mass and
lifetime. In particular, we examine the prospects for detailed event study at
ATLAS using the ECAL (making use of its timing and pointing capabilities)
together with the TRT, or using the muon spectrometer alone. Finally, we also
demonstrate that there is a region in parameter space where the Tevatron could
potentially discover new physics in the delayed Z(l+l-)+MET channel. While our
discussion centers on gauge mediation, many of the results apply to any
scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure
Pure-glue hidden valleys through the Higgs portal
We consider the possibility that the Higgs boson can act as a link to a
hidden sector in the context of pure-glue hidden valley models. In these models
the standard model is weakly coupled, through loops of heavy messengers fields,
to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills
theory. Such a hidden sector contains several metastable hidden glueballs. In
this work we shall extend earlier results on hidden valleys to include
couplings of the messengers to the standard model Higgs sector. The effective
interactions at one-loop couple the hidden gluons to the standard model
particles through the Higgs sector. These couplings in turn induce hidden
glueball decays to fermion pairs, or cascade decays with multiple Higgs
emission. The presence of effective operators of different mass dimensions,
often competing with each other, together with a great diversity of states,
leads to a great variability in the lifetimes and decay modes of the hidden
glueballs. We find that most of the operators considered in this paper are not
heavily constrained by precision electroweak physics, therefore leaving plenty
of room in the parameter space to be explored by the future experiments at the
LHC.Comment: 44 pages, 16 figures. Major revision for JHEP, corrected an error in
Eq. 5.1, comments adde
Searches for phenomena beyond the Standard Model at the LHC with the ATLAS and CMS detectors
The LHC has delivered several fb-1 of data in spring and summer 2011, opening
new windows of opportunity for discovering phenomena beyond the Standard Model.
A summary of the searches conducted by the ATLAS and CMS experiments based on
about 1 fb-1 of data is presented.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 10 pages, 11 figure
Lepton Jets in (Supersymmetric) Electroweak Processes
We consider some of the recent proposals in which weak-scale dark matter is
accompanied by a GeV scale dark sector that could produce spectacular
lepton-rich events at the LHC. Since much of the collider phenomenology is only
weakly model dependent it is possible to arrive at generic predictions for the
discovery potential of future experimental searches. We concentrate on the
production of dark states through bosons and electroweak-inos at the
Tevatron or LHC, which are the cleanest channels for probing the dark sector.
We properly take into account the effects of dark radiation and dark cascades
on the formation of lepton jets. Finally, we present a concrete definition of a
lepton jet and suggest several approaches for inclusive experimental searches.Comment: 23 pages, 13 figures, published version, added section 3.3 expanding
on lepton jet's morpholog
Slightly Non-Minimal Dark Matter in PAMELA and ATIC
We present a simple model in which dark matter couples to the standard model
through a light scalar intermediary that is itself unstable. We find this model
has several notable features, and allows a natural explanation for a surplus of
positrons, but no surplus of anti-protons, as has been suggested by early data
from PAMELA and ATIC. Moreover, this model yields a very small nucleon
coupling, well below the direct detection limits. In this paper we explore the
effect of this model in both the early universe and in the galaxy.Comment: 7 pages, 6 figures, v3: updated for new data, added discussion of
Ferm
Rigidly Supersymmetric Gauge Theories on Curved Superspace
In this note we construct rigidly supersymmetric gauged sigma models and
gauge theories on certain Einstein four-manifolds, and discuss constraints on
these theories. In work elsewhere, it was recently shown that on some
nontrivial Einstein four-manifolds such as AdS, N=1 rigidly supersymmetric
sigma models are constrained to have target spaces with exact K\"ahler forms.
Similarly, in gauged sigma models and gauge theories, we find that
supersymmetry imposes constraints on Fayet-Iliopoulos parameters, which have
the effect of enforcing that K\"ahler forms on quotient spaces be exact. We
also discuss general aspects of universality classes of gauged sigma models, as
encoded by stacks, and also discuss affine bundle structures implicit in these
constructions.Comment: 23 pages; references added; more discussion added; v4: typos fixe
Electroweak Symmetry Breaking in the DSSM
We study the theoretical and phenomenological consequences of modifying the
Kahler potential of the MSSM two Higgs doublet sector. Such modifications
naturally arise when the Higgs sector mixes with a quasi-hidden conformal
sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric
Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling
dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field
space due to the presence of quasi-hidden sector states which get their mass
from the Higgs vevs. The presence of these extra states leads to the fact that
even as Delta approaches 1, the DSSM does not reduce to the MSSM. In
particular, the Higgs can naturally be heavier than the W- and Z-bosons.
Perturbative gauge coupling unification, a large top quark Yukawa, and
consistency with precision electroweak can all be maintained for Delta close to
unity. Moreover, such values of Delta can naturally be obtained in
string-motivated constructions. The quasi-hidden sector generically contains
states charged under SU(5)_GUT as well as gauge singlets, leading to a rich,
albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte
Probing Colored Particles with Photons, Leptons, and Jets
If pairs of new colored particles are produced at the Large Hadron Collider,
determining their quantum numbers, and even discovering them, can be
non-trivial. We suggest that valuable information can be obtained by measuring
the resonant signals of their near-threshold QCD bound states. If the particles
are charged, the resulting signatures include photons and leptons and are
sufficiently rich for unambiguously determining their various quantum numbers,
including the charge, color representation and spin, and obtaining a precise
mass measurement. These signals provide well-motivated benchmark models for
resonance searches in the dijet, photon+jet, diphoton and dilepton channels.
While these measurements require that the lifetime of the new particles be not
too short, the resulting limits, unlike those from direct searches for pair
production above threshold, do not depend on the particles' decay modes. These
limits may be competitive with more direct searches if the particles decay in
an obscure way.Comment: 39 pages, 9 figures; v2: more recent searches include
- …