1 research outputs found

    A Trapped Field of 17.6 T in Melt-Processed, Bulk Gd-Ba-Cu-O Reinforced with Shrink-Fit Steel

    Full text link
    The ability of large grain, REBa2_{2}Cu3_{3}O7−δ_{7-\delta} [(RE)BCO; RE = rare earth] bulk superconductors to trap magnetic field is determined by their critical current. With high trapped fields, however, bulk samples are subject to a relatively large Lorentz force, and their performance is limited primarily by their tensile strength. Consequently, sample reinforcement is the key to performance improvement in these technologically important materials. In this work, we report a trapped field of 17.6 T, the largest reported to date, in a stack of two, silver-doped GdBCO superconducting bulk samples, each of diameter 25 mm, fabricated by top-seeded melt growth (TSMG) and reinforced with shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively straightforward and inexpensive to implement and offers the prospect of easy access to portable, high magnetic fields without any requirement for a sustaining current source.Comment: Updated submission to reflect licence change to CC-BY. This is the "author accepted manuscript" and is identical in content to the published versio
    corecore