104 research outputs found
Duality, Derivative-Based Training Methods and Hyperparameter Optimization for Support Vector Machines
In this thesis we consider the application of Fenchel's duality theory and gradient-based methods for the training and hyperparameter optimization of Support Vector Machines. We show that the dualization of convex training problems is possible theoretically in a rather general formulation. For training problems following a special structure (for instance, standard training problems) we find that the resulting optimality conditions can be interpreted concretely. This approach immediately leads to the well-known notion of support vectors and a formulation of the Representer Theorem. The proposed theory is applied to several examples such that dual formulations of training problems and associated optimality conditions can be derived straightforwardly. Furthermore, we consider different formulations of the primal training problem which are equivalent under certain conditions. We also argue that the relation of the corresponding solutions to the solution of the dual training problem is not always intuitive. Based on the previous findings, we consider the application of customized optimization methods to the primal and dual training problems. A particular realization of Newton's method is derived which could be used to solve the primal training problem accurately. Moreover, we introduce a general convergence framework covering different types of decomposition methods for the solution of the dual training problem. In doing so, we are able to generalize well-known convergence results for the SMO method. Additionally, a discussion of the complexity of the SMO method and a motivation for a shrinking strategy reducing the computational effort is provided. In a last theoretical part, we consider the problem of hyperparameter optimization. We argue that this problem can be handled efficiently by means of gradient-based methods if the training problems are formulated appropriately. Finally, we evaluate the theoretical results concerning the training and hyperparameter optimization approaches practically by means of several example training problems
Local Accuracy and Global Consistency for Efficient SLAM
This thesis is concerned with the problem of Simultaneous Localisation and
Mapping (SLAM) using visual data only. Given the video stream of a moving
camera, we wish to estimate the structure of the environment and the motion
of the device most accurately and in real-time.
Two effective approaches were presented in the past. Filtering methods
marginalise out past poses and summarise the information gained over time
with a probability distribution. Keyframe methods rely on the optimisation
approach of bundle adjustment, but computationally must select only a small
number of past frames to process. We perform a rigorous comparison between
the two approaches for visual SLAM. Especially, we show that accuracy comes
from a large number of points, while the number of intermediate frames only
has a minor impact. We conclude that keyframe bundle adjustment is superior
to ltering due to a smaller computational cost.
Based on these experimental results, we develop an efficient framework for
large-scale visual SLAM using the keyframe strategy. We demonstrate that
SLAM using a single camera does not only drift in rotation and translation,
but also in scale. In particular, we perform large-scale loop closure correction
using a novel variant of pose-graph optimisation which also takes scale drift
into account. Starting from this two stage approach which tackles local motion
estimation and loop closures separately, we develop a unified framework
for real-time visual SLAM. By employing a novel double window scheme, we
present a constant-time approach which enables the local accuracy of bundle
adjustment while ensuring global consistency. Furthermore, we suggest a new
scheme for local registration using metric loop closures and present several improvements
for the visual front-end of SLAM. Our contributions are evaluated
exhaustively on a number of synthetic experiments and real-image data-set from
single cameras and range imaging devices
Real-time monocular SLAM: Why filter?
Abstract—While the most accurate solution to off-line structure from motion (SFM) problems is undoubtedly to extract as much correspondence information as possible and perform global optimisation, sequential methods suitable for live video streams must approximate this to fit within fixed computational bounds. Two quite different approaches to real-time SFM — also called monocular SLAM (Simultaneous Localisation and Mapping) — have proven successful, but they sparsify the problem in different ways. Filtering methods marginalise out past poses and summarise the information gained over time with a probability distribution. Keyframe methods retain the optimisation approach of global bundle adjustment, but computationally must select only a small number of past frames to process. In this paper we perform the first rigorous analysis of the relative advantages of filtering and sparse optimisation for sequential monocular SLAM. A series of experiments in simulation as well using a real image SLAM system were performed by means of covariance propagation and Monte Carlo methods, and comparisons made using a combined cost/accuracy measure. With some well-discussed reservations, we conclude that while filtering may have a niche in systems with low processing resources, in most modern applications keyframe optimisation gives the most accuracy per unit of computing time. I
Hierarchical Reactive Control for Soccer Playing Humanoid Robots
What drives thousands of researchers worldwide to devote their creativity and energy t
A combinatorial flow-based formulation for temporal bin packing problems
We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task
is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To keep operational costs but also energy consumption low, TBPP
is concerned with minimizing the number of servers in use, whereas TBPP-FU additionally takes into account the switch-on processes required for their operation. Either way, challenging integer optimization
problems are obtained, which can differ significantly from each other despite the seemingly only marginal
variation of the problems. In the literature, a branch-and-price method enriched with many preprocessing
steps (for TBPP) and compact formulations (for TBPP-FU), benefiting from numerous reduction methods,
have emerged as, currently, the most promising solution methods. In this paper, we introduce, in a sense,
a unified solution framework for both problems (and, in fact, a wide variety of further interval scheduling
applications) based on graph theory. Any scientific contributions in this direction failed so far because of
the exponential size of the associated networks. The approach we present in this article does not change
the theoretical exponentiality itself, but it can make it controllable by clever construction of the resulting
graphs. In particular, for the first time all classical benchmark instances (and even larger ones) for the
two problems can be solved – in times that significantly improve those of the previous approaches
Improved flow-based formulations for the skiving stock problem
Thanks to the rapidly advancing development of (commercial) MILP software and hardware components, pseudo-polynomial formulations have been established as a powerful tool for solving cutting and packing problems in recent years. In this paper, we focus on the one-dimensional skiving stock problem (SSP), where a given inventory of small items has to be recomposed to obtain a maximum number of larger objects, each satisfying a minimum threshold length. In the literature, different modeling approaches for the SSP have been proposed, and the standard flow-based formulation has turned out to lead to the best trade-off between efficiency and solution time. However, especially for instances of practically meaningful sizes, the resulting models involve very large numbers of variables and constraints, so that appropriate reduction techniques are required to decrease the numerical efforts. For that reason, this paper introduces two improved flow-based formulations for the skiving stock problem that are able to cope with much larger problem sizes. By means of extensive experiments, these new models are shown to possess significantly fewer variables as well as an average better computational performance compared to the standard arcflow formulation
Variable and constraint reduction techniques for the temporal bin packing problem with fire-ups
The instances were solved by the commercial software Gurobi. The underlying implementation of the models in Python can be found in https://github.com/wotzlaff/tbpp-cf2.The aim of this letter is to design and computationally test several improvements for the compact integer linear programming (ILP) formulations of the temporal bin packing problem with fire-ups (TBPP-FU). This problem is a challenging generalization of the classical bin packing problem in which the items, interpreted as jobs of given weight, are active only during an associated time window. The TBPP-FU objective function asks for the minimization of the weighted sum of the number of bins, viewed as servers of given capacity, to execute all the jobs and the total number of fire-ups. The fire-ups count the number of times the servers are activated due to the presence of assigned active jobs. Our contributions are effective procedures to reduce the number of variables and constraints of the ILP formulations proposed in the literature as well as the introduction of new valid inequalities. By extensive computational tests we show that substantial improvements can be achieved and several instances from the literature can be solved to proven optimality for the first time.Open Access funding enabled and organized by Projekt DEAL
SLAM++: Simultaneous Localisation and Mapping at the Level of Objects
We present the major advantages of a new ‘object ori-ented ’ 3D SLAM paradigm, which takes full advantage in the loop of prior knowledge that many scenes consist of repeated, domain-specific objects and structures. As a hand-held depth camera browses a cluttered scene, real-time 3D object recognition and tracking provides 6DoF camera-object constraints which feed into an explicit graph of objects, continually refined by efficient pose-graph opti-misation. This offers the descriptive and predictive power of SLAM systems which perform dense surface reconstruc-tion, but with a huge representation compression. The ob-ject graph enables predictions for accurate ICP-based cam-era to model tracking at each live frame, and efficient ac-tive search for new objects in currently undescribed image regions. We demonstrate real-time incremental SLAM in large, cluttered environments, including loop closure, relo-calisation and the detection of moved objects, and of course the generation of an object level scene description with the potential to enable interaction. 1
Object Registration in Semi-cluttered and Partial-occluded Scenes for Augmented Reality
This paper proposes a stable and accurate object registration pipeline for markerless augmented reality applications. We present two novel algorithms for object recognition and matching to improve the registration accuracy from model to scene transformation via point cloud fusion. Whilst the first algorithm effectively deals with simple scenes with few object occlusions, the second algorithm handles cluttered scenes with partial occlusions for robust real-time object recognition and matching. The computational framework includes a locally supported Gaussian weight function to enable repeatable detection of 3D descriptors. We apply a bilateral filtering and outlier removal to preserve edges of point cloud and remove some interference points in order to increase matching accuracy. Extensive experiments have been carried to compare the proposed algorithms with four most used methods. Results show improved performance of the algorithms in terms of computational speed, camera tracking and object matching errors in semi-cluttered and partial-occluded scenes
- …