1,333 research outputs found
An embedding scheme for the Dirac equation
An embedding scheme is developed for the Dirac Hamiltonian H. Dividing space
into regions I and II separated by surface S, an expression is derived for the
expectation value of H which makes explicit reference to a trial function
defined in I alone, with all details of region II replaced by an effective
potential acting on S and which is related to the Green function of region II.
Stationary solutions provide approximations to the eigenstates of H within I.
The Green function for the embedded Hamiltonian is equal to the Green function
for the entire system in region I. Application of the method is illustrated for
the problem of a hydrogen atom in a spherical cavity and an Au(001)/Ag/Au(001)
sandwich structure using basis sets that satisfy kinetic balance.Comment: 16 pages, 5 figure
Application of relativistic scattering theory of x rays to diffraction anomalous fine structure in Cu
We apply our recent first-principles formalism of magnetic scattering of circularly polarized x rays to a single Cu crystal. We demonstrate the ability of our formalism to interpret the crystalline environment related near-edge fine structure features in the resonant x-ray scattering spectra at the Cu K absorption edge. We find good agreement between the computed and measured diffraction anomalous fine structure features of the x-ray scattering spectra
Relativistic confinement of neutral fermions with a trigonometric tangent potential
The problem of neutral fermions subject to a pseudoscalar potential is
investigated. Apart from the solutions for , the problem is
mapped into the Sturm-Liouville equation. The case of a singular trigonometric
tangent potential () is exactly solved and the
complete set of solutions is discussed in some detail. It is revealed that this
intrinsically relativistic and true confining potential is able to localize
fermions into a region of space arbitrarily small without the menace of
particle-antiparticle production.Comment: 12 page
The EU and Asia within an evolving global order: what is Europe? Where is Asia?
The papers in this special edition are a very small selection from those presented at the EU-NESCA (Network of European Studies Centres in Asia) conference on "the EU and East Asia within an Evolving Global Order: Ideas, Actors and Processes" in November 2008 in Brussels. The conference was the culmination of three years of research activity involving workshops and conferences bringing together scholars from both regions primarily to discuss relations between Europe and Asia, perceptions of Europe in Asia, and the relationship between the European regional project and emerging regional forms in Asia. But although this was the last of the three major conferences organised by the consortium, it in many ways represented a starting point rather than the end; an opportunity to reflect on the conclusions of the first phase of collaboration and point towards new and continuing research agendas for the future
Correlation of interfacial bonding mechanism and equilibrium conductance of molecular junctions
We report theoretical investigations on the role of interfacial bonding
mechanism and its resulting structures to quantum transport in molecular wires.
Two bonding mechanisms for the Au-S bond in an
Au(111)/1,4-benzenedithiol(BDT)/Au(111) junction were identified by ab initio
calculation, confirmed by a recent experiment, which, we showed, critically
control charge conduction. It was found, for Au/ BDT/Au junctions, the hydrogen
atom, bound by a dative bond to the Sulfur, is energetically non-dissociative
after the interface formation. The calculated conductance and junction
breakdown forces of H-non-dissociative Au/BDT/Au devices are consistent with
the experimental values, while the H-dissociated devices, with the interface
governed by typical covalent bonding, give conductance more than an order of
magnitude larger. By examining the scattering states that traverse the
junctions, we have revealed that mechanical and electric properties of a
junction have strong correlation with the bonding configuration. This work
clearly demonstrates that the interfacial details, rather than previously
believed many-body effects, is of vital importance for correctly predicting
equilibrium conductance of molecular junctions; and manifests that the
interfacial contact must be carefully understood for investigating quantum
transport properties of molecular nanoelectronics.Comment: 18 pages, 6 figures, 2 tables, to be appeared in Frontiers of Physics
9(6), 780 (2014
Rare earth contributions to the X-ray magnetic circular dichroism at the Co K edge in rare earth-cobalt compounds investigated by multiple-scattering calculations
The X-ray magnetic circular dichroism (XMCD) has been measured at the Co K
edge in Co-hcp and R-Co compounds (R=La, Tb, Dy). The structure of the
experimental XMCD spectra in the near-edge region has been observed to be
highly sensitive to the magnetic environment of the absorbing site.
Calculations of the XMCD have been carried out at the Co K edge in Co metal,
LaCo and TbCo within the multiple-scattering framework including the
spin-orbit coupling. In the three systems, the XMCD spectra in the near-edge
region are well reproduced. The possibility to separate and quantitatively
estimate the local effects from those due to the neighboring atoms in the XMCD
cross section makes possible a more physical understanding of the spectra. The
present results emphasize the major role played by the states of the Tb
ions in the XMCD spectrum at the Co K edge in the TbCo compound.Comment: 34 pages, revtex, 10 eps figures included with epsf, after referee
revie
The dynamic trophic niche of an island bird of prey
Optimal foraging theory predicts an inverse relationship between the availability of preferred prey and niche width in animals. Moreover, when individuals within a population have identical prey preferences and preferred prey is scarce, a nested pattern of trophic niche is expected if opportunistic and selective individuals can be identified. Here, we examined intraspecific variation in the trophic niche of a resident population of striated caracara (Phalcoboenus australis) on Isla de los Estados (Staten Island), Argentina, using pellet and stable isotope analyses. While this raptor specializes on seabird prey, we assessed this population\u27s potential to forage on terrestrial prey, especially invasive herbivores as carrion, when seabirds are less accessible. We found that the isotopic niche of this species varies with season, age, breeding status, and, to a lesser extent, year. Our results were in general consistent with classic predictions of the optimal foraging theory, but we also explore other possible explanations for the observed pattern. Isotopic niche was broader for groups identified a priori as opportunistic (i.e., nonbreeding adults during the breeding season and the whole population during the nonbreeding season) than it was for individuals identified a priori as selective. Results suggested that terrestrial input was relatively low, and invasive mammals accounted for no more than 5% of the input. The seasonal pulse of rockhopper penguins likely interacts with caracara\u27s reproductive status by constraining the spatial scale on which individuals forage. Niche expansion in spatially flexible individuals did not reflect an increase in terrestrial prey input; rather, it may be driven by a greater variation in the types of marine prey items consumed
Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution
Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system
Regulating Clothing Outwork: A Sceptic's View
By applying the strategies of international anti-sweatshop campaigns to the Australian context, recent regulations governing home-based clothing production hold retailers
responsible for policing the wages and employment conditions of clothing outworkers who manufacture clothing on their behalf. This paper argues that the new approach
oversimplifies the regulatory challenge by assuming (1) that Australian clothing production is organised in a hierarchical âbuyer-ledâ linear structure in which core
retail firms have the capacity to control their suppliersâ behaviour; (2) that firms act as unitary moral agents; and (3) that interventions imported from other times and places
are applicable to the contemporary Australian context. After considering some alternative regulatory approaches, the paper concludes that the new regulatory strategy effectively privatises responsibility for labour market conditions â a development that cries out for further debate
- âŠ