31 research outputs found
A study of salmonid egg and fry survival in the River Taff catchment
This report looks at previous findings that egg survival was related to the percentage of fine solids in the spawning gravels of the River Taff. Green salmonid eggs were planted out at 8 sites in the Taff catchment; and eyed salmonid eggs were planted out at 27 sites. Gravel cores were taken at 18 of these sites and an analysis of their composition was carried out, particular attention being given to the pecentage of particles less than 1mm. As well as its method, the report includes its own findings and recommendations, which includes other factors influencing egg survival such as the need for water quality improvements
Material-Specific Investigations of Correlated Electron Systems
We present the results of numerical studies for selected materials with
strongly correlated electrons using a combination of the local-density
approximation and dynamical mean-field theory (DMFT). For the solution of the
DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed.
All simulations were performed on the supercomputer HLRB II at the Leibniz
Rechenzentrum in Munich. Specifically we have analyzed the pressure induced
metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the
fluctuating-valence elemental metal Yb, and the spectral properties of a
covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in
Science and Engineering, Garching 2009" (Springer
Molecular Modeling of D2-Like Dopamine-Receptors
Three-dimensional computer models of the rat D2, D3 and D4 dopamine receptor subtypes have been constructed based on the diffraction co-ordinates for bacteriorhodopsin, another membrane-bound protein containing seven transmembrane domains presumed to be arranged in a similar spatial orientation. Models were assembled by aligning the putative transmembrane domains of the dopamine receptors with those of bacteriorhodopsin using sequence similarities, and then superimposing these modelled alpha-helices on to the bacteriorhodopsin-derived co-ordinates. These models explore the potential hydrogen bonding, electrostatic and stacking interactions within the receptor which may be important for maintaining the conformation of these receptors, and thereby provide target sites for agonist binding. Proposed interactions between the catecholamine ligands and these receptors appear to account for the affinity, although not the specificity, of these agonist ligands for the different dopamine receptor subtypes. Such models will be useful for establishing structure-function relationships between ligands and the dopamine receptors, and may ultimately provide a template for the design of receptor-specific drugs