5,030 research outputs found
Impurity transport in temperature gradient driven turbulence
In the present paper the transport of impurities driven by trapped electron
(TE) mode turbulence is studied. Non-linear (NL) gyrokinetic simulations using
the code GENE are compared with results from quasilinear (QL) gyrokinetic
simulations and a computationally efficient fluid model. The main focus is on
model comparisons for electron temperature gra- dient driven turbulence
regarding the sign of the convective impurity velocity (pinch) and the impurity
density gradient R/LnZ (peaking factor) for zero impurity flux. In particular,
the scaling of the impurity peaking factors with impurity charge Z and with
driving temper- ature gradient is investigated and compared with the results
for Ion Temperature Gradient (ITG) driven turbulence. In addition, the impurity
peaking is compared to the main ion peaking obtained by a self-consistent fluid
calculation of the density gradients corresponding to zero particle fluxes.
For the scaling of the peaking factor with impurity charge Z, a weak
dependence is obtained from NL GENE and fluid simulations. The QL GENE results
show a stronger dependence for low Z impurities and overestimates the peaking
factor by up to a factor of two in this region. As in the case of ITG dominated
turbulence, the peaking factors saturate as Z increases, at a level much below
neoclassical predictions. However, the scaling with Z is weak or reversed as
compared to the ITG case.
The scaling of impurity peaking with the background temperature gradients is
found to be weak in the NL GENE and fluid simulations. The QL results are also
here found to significantly overestimate the peaking factor for low Z values.
For the parameters considered, the background density gradient for zero
particle flux is found to be slightly larger than the corresponding impurity
zero flux gradient.Comment: 23 pages, 13 figures. Submitted to AIP: Physics of Plasma
Nitramine smokeless propellant research
A transient ballistics and combustion model is derived to represent the closed vessel experiment that is widely used to characterize propellants. A computer program is developed to solve the time-dependent equations, and is applied to explain aspects of closed vessel behavior. In the case of nitramine propellants the cratering of the burning surface associated with combustion above break-point pressures augments the effective burning rate as deduced from the closed vessel experiment. Low pressure combustion is significantly affected by the ignition process and, in the case of nitramine propellants, by the developing and changing surface structure. Thus, burning rates deduced from the closed vessel experiment may or may not agree with those measured in the equilibrium strand burner. Series of T burner experiments are performed to compare the combustion instability characteristics of nitramine (HMX) containing propellants and ammonium perchlorate (AP)propellants. Although ash produced by more fuel rich propellants could have provided mechanical suppression, results from clean-burning propellants permit the conclusion that HMX reduces the acoustic driving
Pupil mobility, attainment and progress in secondary school
This paper is the second of two articles arising from a study of the association between pupil mobility and attainment in national tests and examinations in an inner London borough. The first article (Strand & Demie, 2006) examined the association of pupil mobility with attainment and progress during primary school. It concluded that pupil mobility had little impact on performance in national tests at age 11, once pupilsâ prior attainment at age 7 and other pupil background factors such as age, sex, special educational needs, stage of fluency in English and socio-economic disadvantage were taken into account. The present article reports the results for secondary schools (age 11-16). The results indicate that pupil mobility continues to have a significant negative association with performance in public examinations at age 16, even after including statistical controls for prior attainment at age 11 and other pupil background factors. Possible reasons for the contrasting results across school phases are explored. The implications for policy and further research are discussed
Educational aspirations in inner city schools
The research aimed to assess the nature and level of pupilsâ educational aspirations and to elucidate the factors that influence these aspirations. A sample of five inner city comprehensive secondary schools were selected by their Local Authority because of poor pupil attendance, below average examination results and low rates of continuing in full-time education after the age of 16. Schools were all ethnically mixed and co-educational. Over 800 pupils aged 12-14 completed a questionnaire assessing pupilsâ experience of home, school and their peers. A sub-sample of 48 pupils selected by teachers to reflect ethnicity and ability levels in individual schools also participated in detailed focus group interviews. There were no significant differences in aspirations by gender or year group, but differences between ethnic groups were marked. Black African, Asian Other and Pakistani groups had significantly higher educational aspirations than the White British group, who had the lowest aspirations. The results suggest the high aspirations of Black African, Asian Other and Pakistani pupils are mediated through strong academic self-concept, positive peer support, a commitment to schooling and high educational aspirations in the home. They also suggest that low educational aspirations may have different mediating influences in different ethnic groups. The low aspirations of White British pupils seem to relate most strongly to poor academic self-concept and low educational aspirations in the home, while for Black Caribbean pupils disaffection, negative peers and low commitment to schooling appear more relevant. Interviews with pupils corroborated the above findings and further illuminated the factors students described as important in their educational aspirations. The results are discussed in relation to theories of aspiration which stress its nature as a cultural capacity
Efficient implementation of the Gutzwiller variational method
We present a self-consistent numerical approach to solve the Gutzwiller
variational problem for general multi-band models with arbitrary on-site
interaction. The proposed method generalizes and improves the procedure derived
by Deng et al., Phys. Rev. B. 79 075114 (2009), overcoming the restriction to
density-density interaction without increasing the complexity of the
computational algorithm. Our approach drastically reduces the problem of the
high-dimensional Gutzwiller minimization by mapping it to a minimization only
in the variational density matrix, in the spirit of the Levy and Lieb
formulation of DFT. For fixed density the Gutzwiller renormalization matrix is
determined as a fixpoint of a proper functional, whose evaluation only requires
ground-state calculations of matrices defined in the Gutzwiller variational
space. Furthermore, the proposed method is able to account for the symmetries
of the variational function in a controlled way, reducing the number of
variational parameters. After a detailed description of the method we present
calculations for multi-band Hubbard models with full (rotationally invariant)
Hund's rule on-site interaction. Our analysis shows that the numerical
algorithm is very efficient, stable and easy to implement. For these reasons
this method is particularly suitable for first principle studies -- e.g., in
combination with DFT -- of many complex real materials, where the full
intra-atomic interaction is important to obtain correct results.Comment: 19 pages, 7 figure
- âŚ