41 research outputs found
Association of total energy intake and macronutrient consumption with colorectal cancer risk: results from a large population-based case-control study in Newfoundland and Labrador and Ontario, Canada
<p>Abstract</p> <p>Background</p> <p>Diet is regarded as one of the most important environmental factors associated with colorectal cancer (CRC) risk. A recent report comprehensively concluded that total energy intake does not have a simple relationship with CRC risk, and that the data were inconsistent for carbohydrate, cholesterol and protein. The objective of this study was to identify the associations of CRC risk with dietary intakes of total energy, protein, fat, carbohydrate, fiber, and alcohol using data from a large case-control study conducted in Newfoundland and Labrador (NL) and Ontario (ON), Canada.</p> <p>Methods</p> <p>Incident colorectal cancer cases (n = 1760) were identified from population-based cancer registries in the provinces of ON (1997-2000) and NL (1999-2003). Controls (n = 2481) were a random sample of residents in each province, aged 20-74 years. Family history questionnaire (FHQ), personal history questionnaire (PHQ), and food frequency questionnaire (FFQ) were used to collect study data. Logistic regression was used to evaluate the association of intakes of total energy, macronutrients and alcohol with CRC risk.</p> <p>Results</p> <p>Total energy intake was associated with higher risk of CRC (OR: 1.56; 95% CI: 1.21-2.01, <it>p</it>-trend = 0.02, 5<sup>th </sup>versus 1<sup>st </sup>quintile), whereas inverse associations emerged for intakes of protein (OR: 0.85, 95%CI: 0.69-1.00, <it>p</it>-trend = 0.06, 5<sup>th </sup>versus 1<sup>st </sup>quintile), carbohydrate (OR: 0.81, 95%CI: 0.63-1.00, <it>p</it>-trend = 0.05, 5<sup>th </sup>versus 1<sup>st </sup>quintile) and total dietary fiber (OR: 0.84, 95% CI:0.67-0.99, <it>p</it>-trend = 0.04, 5<sup>th </sup>versus 1<sup>st </sup>quintile). Total fat, alcohol, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, and cholesterol were not associated with CRC risk.</p> <p>Conclusion</p> <p>This study provides further evidence that high energy intake may increase risk of incident CRC, whereas diets high in protein, fiber, and carbohydrate may reduce the risk of the disease.</p
Allelic spectrum of the natural variation in CRP
With the recent completion of the International HapMap Project, many tools are in hand for genetic association studies seeking to test the common variant/common disease hypothesis. In contrast, very few tools and resources are in place for genotype–phenotype studies hypothesizing that rare variation has a large impact on the phenotype of interest. To create these tools for rare variant/common disease studies, much interest is being generated towards investing in re-sequencing either large sample sizes of random chromosomes or smaller sample sizes of patients with extreme phenotypes. As a case study for rare variant discovery in random chromosomes, we have re-sequenced ~1,000 chromosomes representing diverse populations for the gene C-reactive protein (CRP). CRP is an important gene in the fields of cardiovascular and inflammation genetics, and its size (~2 kb) makes it particularly amenable medical or deep re-sequencing. With these data, we explore several issues related to the present-day candidate gene association study including the benefits of complete SNP discovery, the effects of tagSNP selection across diverse populations, and completeness of dbSNP for CRP. Also, we show that while deep re-sequencing uncovers potentially medically relevant coding SNPs, these SNPs are fleetingly rare when genotyped in a population-based survey of 7,000 Americans (NHANES III). Collectively, these data suggest that several different types re-sequencing and genotyping approaches may be required to fully understand the complete spectrum of alleles that impact human phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at http://dx.doi.org/10.1007/s00439-006-0160-y and is accessible for authorized users
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Recommended from our members
Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation
Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa
Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types.
UNLABELLED: Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. SIGNIFICANCE: We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932.The Breast Cancer Association Consortium (BCAC), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL), and the Ovarian Cancer Association Consortium (OCAC) that contributed breast, prostate, and ovarian cancer data analyzed in this study were in part funded by Cancer Research UK [C1287/A10118 and C1287/A12014 for BCAC; C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, and C16913/A6135 for PRACTICAL; and C490/A6187, C490/A10119, C490/A10124, C536/A13086, and C536/A6689 for OCAC]. Funding for the Collaborative Oncological Gene-environment Study (COGS) infrastructure came from: the European Community's Seventh Framework Programme under grant agreement number 223175 (HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, and C8197/A16565), the US National Institutes of Health (CA128978) and the Post-Cancer GWAS Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative (1U19 CA148537, 1U19 CA148065, and 1U19 CA148112), the US Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund [with donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07)]. Additional financial support for contributing studies is documented under Supplementary Financial Support.This is the author accepted manuscript. The final version is available from the American Association for Cancer Research via http://dx.doi.org/10.1158/2159-8290.CD-15-122
Detectable clonal mosaicism and its relationship to aging and cancer
In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases
A Hazard-Aware Metric for Ordinal Multi-Class Classification in Pathology
Artificial Intelligence (AI) for decision support and diagnosis in pathology could provide immense value to society, improving patient outcomes and alleviating workload demands on pathologists. However, this potential cannot be realized until sufficient methods for testing and evaluation of such AI systems are developed and adopted. We present a novel metric for evaluation of multi-class classification algorithms for pathology, Error Severity Index (ESI), to address the needs of pathologists and pathology lab managers in evaluating AI systems
Assessing the validity of a self-administered food-frequency questionnaire (FFQ) in the adult population of Newfoundland and Labrador, Canada
Background: The Food- Frequency Questionnaire (FFQ) is a dietary assessment tool frequently used in large-scale
nutritional epidemiology studies. The goal of the present study is to validate a self-administered version of the
Hawaii FFQ modified for use in the general adult population of Newfoundland and Labrador (NL).
Methods: Over a one year period, 195 randomly selected adults completed four 24-hour dietary recalls (24-HDRs)
by telephone and one subsequent self-administered FFQ. Estimates of energy and nutrients derived from the
24-HDRs and FFQs were compared (protein, carbohydrate, fibre, fat, vitamin A, carotene, vitamin D, and calcium).
Data were analyzed using the Pearson’s correlation coefficients, cross-classification method, and Bland–Altman plots.
Results: The mean nutrient intake values of the 24-HDRs were lower than those of the FFQs, except for protein in
men. Sex and energy-adjusted de-attenuated Pearson correlation coefficients for each nutrient varied from 0.13 to
0.61. Except for protein in men, all correlations were statistically significant with p < 0.05. Cross-classification analysis
revealed that on average, 74% women and 78% men were classified in the same or adjacent quartile of nutrient
intake when comparing data from the FFQ and 24-HDRs. Bland–Altman plots showed no serious systematic bias
between the administration of the two instruments over the range of mean intakes.
Conclusion: This 169-item FFQ developed specifically for the adult NL population had moderate relative validity
and therefore can be used in studies to assess food consumption in the general adult population of NL. This tool
can be used to classify individual energy and nutrient intakes into quartiles, which is useful in examining
relationships between diet and chronic disease
Evaluating the ovarian cancer gonadotropin hypothesis: a candidate gene study
OBJECTIVE: Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of how variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted.METHODS: Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations.RESULTS: We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive).CONCLUSIONS: Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available<br/