79 research outputs found

    Effect of genetic and proteomic variation in field isolates of Mycoplasma hyopneumoniae on virulence, diagnosis and prevention of disease in the pig

    Get PDF
    The purpose of these studies was to investigate the implications of variability in virulence, genetics and antigenic profiles among field isolates of Mycoplasma hyopneumoniae. Increased virulence was compared with in vitro and in vivo growth characteristics of the organism and with immune parameters in the pig, although none was found to be significantly correlated. The impact of proteomic and genetic variation among field isolates on diagnostic assays was examined by both in vivo and in vitro studies. Three enzyme-linked immunosorbent assays (ELISAs) used in the United States were compared and shown to not detect all isolates of M. hyopneumoniae equally. Similarly, polymerase chain reaction (PCR) assays were tested against a panel of M. hyopneumoniae field isolates and it was shown that some isolates are not detected by all published PCR assays. Therefore, two new real-time PCR assays were developed that appear to be both sensitive and specific for M. hyopneumoniae. The ability of a commercial vaccine to protect against field isolates of M. hyopneumoniae was evaluated in a challenge study using two recent field isolates. One isolate produced nearly twice as many macroscopic lung lesions as the other isolate, but vaccinated pigs had less pneumonia compared to non-vaccinated pigs in both challenge groups. Together these results demonstrate that differences exist among isolates of M. hyopneumoniae in the field at the genetic and antigenic level and that these differences impact the virulence of the organism, diagnostic capabilities in the pig, and the prevention of M. hyopneumoniae-associated disease

    Quantitative real-time polymerase chain reaction for detecting Mycoplasma hyosynoviae and Mycoplasma hyorhinis in pen-based oral, tonsillar, and nasal fluids

    Get PDF
    Mycoplasma (M.) hyorhinis and M. hyosynoviae are pathogens known to cause disease in pigs post-weaning. Due to their fastidious nature, there is increased need for culture-independent diagnostic platforms to detect these microorganisms. Therefore, this study was performed to develop and optimize quantitative real-time PCR (qPCR) assays to rapidly detect M. hyorhinis and M. hyosynoviae in pen-based oral fluids as well as nasal and tonsillar fluids as proxies for samples used in swine herd surveillance. Two methods of genomic DNA extraction, automated versus manual, were used to compare diagnostic test performance. A wean-to-finish longitudinal study was also carried out to demonstrate the reproducibility of using pen-based oral fluids. Overall, pen-based oral and tonsillar fluids were more likely to be positive for both types of bacteria whereas only M. hyorhinis was detected in nasal fluids. DNA extraction protocols were shown to significantly influence test result. Although the initial detection time somewhat differed, both organisms were repeatedly detected in the longitudinal study. Overall, this study evaluated two qPCR methods for rapid and specific detection of either mycoplasma. Results from the present investigation can serve as a foundation for future studies to determine the prevalence of the two microorganisms, environmental load, and effectiveness of veterinary interventions for infection control

    Quantitative real-time polymerase chain reaction for detecting \u3ci\u3eMycoplasma hyosynoviae\u3c/i\u3e and \u3ci\u3eMycoplasma hyorhinis\u3c/i\u3e in pen-based oral, tonsillar, and nasal fluids

    Get PDF
    Mycoplasma (M.) hyorhinis and M. hyosynoviae are pathogens known to cause disease in pigs post-weaning. Due to their fastidious nature, there is increased need for culture-independent diagnostic platforms to detect these microorganisms. Therefore, this study was performed to develop and optimize quantitative real-time PCR (qPCR) assays to rapidly detect M. hyorhinis and M. hyosynoviae in pen-based oral fluids as well as nasal and tonsillar fluids as proxies for samples used in swine herd surveillance. Two methods of genomic DNA extraction, automated versus manual, were used to compare diagnostic test performance. A wean-to-finish longitudinal study was also carried out to demonstrate the reproducibility of using pen-based oral fluids. Overall, pen-based oral and tonsillar fluids were more likely to be positive for both types of bacteria whereas only M. hyorhinis was detected in nasal fluids. DNA extraction protocols were shown to significantly influence test result. Although the initial detection time somewhat differed, both organisms were repeatedly detected in the longitudinal study. Overall, this study evaluated two qPCR methods for rapid and specific detection of either mycoplasma. Results from the present investigation can serve as a foundation for future studies to determine the prevalence of the two microorganisms, environmental load, and effectiveness of veterinary interventions for infection control

    Detection of Salmonella Enteritidis in Pooled Poultry Environmental Samples Using a Serotype-Specific Real-Time–Polymerase Chain Reaction Assay

    Get PDF
    While real-time–polymerase chain reaction (RT PCR) has been used as a rapid test for detection of Salmonella Enteritidis in recent years, little research has been done to assess the feasibility of pooling poultry environmental samples with aSalmonella Enteritidis–specific RT PCR assay. Therefore the objective of this study was to compare RT PCR SalmonellaEnteritidis detection in individual and pooled (in groups of two, three, and four) poultry environmental drag swab samples to traditional cultural methods. The drag swabs were collected from poultry facilities previously confirmed positive forSalmonella Enteritidis and were cultured according to National Poultry Improvement Plan guidelines. Initial, SalmonellaEnteritidis–specific RT PCR assay threshold cycle cutoff values of ≤36, ≤30, and ≤28 were evaluated in comparison to culture. The average limit of detection of the RT PCR assay was 2.4 × 103 colony-forming units (CFUs)/ml, which corresponded to an average threshold cycle value of 36.6. Before enrichment, samples inoculated with concentrations from 102 to 105 CFUs/ml were detected by RT PCR, while after enrichment, samples inoculated from 100 to 105 CFUs/ml were detected by RT PCR. Threshold cycle cutoff values were used in the subsequent field trial from which Salmonella Enteritidis was cultured in 7 of 208 environmental samples (3.4%). Individual samples were 99.0%, 100%, and 100% in agreement with the RT PCR at threshold cycle (Ct) cutoff values of ≤36, ≤30, and ≤28 respectively. The agreement for pooled samples also followed the same trend with highest agreement at Ct ≤ 28 (pool of 2  =  100.0%, pool of 3  =  100.0%, pool of 4  =  100.0%), midrange agreement at Ct ≤ 30 (pool of 2  =  99.0%, pool of 3  =  100.0%, pool of 4  =  100.0%), and lowest agreement at Ct ≤ 36 (pool of 2  =  98.1%, pool of 3  =  97.1%, pool of 4  =  98.1%). In conclusion, regardless of the level of pooling after tetrathionate enrichment, sensitivity was very good, and results would be comparable to what would have been found with individual culture or individual RT PCR at Ct ≤ 36

    Two clinical isolates of Mycoplasma hyosynoviae showed differing pattern of lameness and pathogen detection in experimentally challenged pigs

    Get PDF
    Mycoplasma (M.) hyosynoviae is known to colonize and cause disease in growing-finishing pigs. In this study, two clinical isolates of M. hyosynoviae were compared by inoculating cesarean-derived colostrum-deprived and specific-pathogen-free growing pigs. After intranasal or intravenous inoculation, the proportion and distribution pattern of clinical cases was compared in addition to the severity of lameness. Tonsils were found to be the primary site of colonization, while bacteremia was rarely detected prior to the observation of clinical signs. Regardless of the clinical isolate, route of inoculation, or volume of inocula, histopathological alterations and tissue invasion were detected in multiple joints, indicating an apparent lack of specific joint tropism. Acute disease was primarily observed 7 to 10 days post-inoculation. The variability in the severity of synovial microscopic lesions and pathogen detection in joint cavities suggests that the duration of joint infection may influence the diagnostic accuracy. In summary, these findings demonstrate that diagnosis of M. hyosynoviae-associated arthritis can be influenced by the clinical isolate, and provides a study platform to investigate the colonization and virulence potential of field isolates. This approach can be particularly relevant to auxiliate in surveillance and testing of therapeutic and/or vaccine candidates

    Two clinical isolates of \u3ci\u3eMycoplasma hyosynoviae\u3c/i\u3e showed differing pattern of lameness and pathogen detection in experimentally challenged pigs

    Get PDF
    Mycoplasma (M.) hyosynoviae is known to colonize and cause disease in growing-finishing pigs. In this study, two clinical isolates of M. hyosynoviae were compared by inoculating cesarean-derived colostrum-deprived and specific-pathogen-free growing pigs. After intranasal or intravenous inoculation, the proportion and distribution pattern of clinical cases was compared in addition to the severity of lameness. Tonsils were found to be the primary site of colonization, while bacteremia was rarely detected prior to the observation of clinical signs. Regardless of the clinical isolate, route of inoculation, or volume of inocula, histopathological alterations and tissue invasion were detected in multiple joints, indicating an apparent lack of specific joint tropism. Acute disease was primarily observed 7 to 10 days post-inoculation. The variability in the severity of synovial microscopic lesions and pathogen detection in joint cavities suggests that the duration of joint infection may influence the diagnostic accuracy. In summary, these findings demonstrate that diagnosis of M. hyosynoviae-associated arthritis can be influenced by the clinical isolate, and provides a study platform to investigate the colonization and virulence potential of field isolates. This approach can be particularly relevant to auxiliate in surveillance and testing of therapeutic and/or vaccine candidates

    Health & Nutritional Sciences Free Communication Day: Spring 2021 Plan B Abstracts

    Get PDF
    This document contains Plan B abstracts presented by graduate students at the Health and Nutritional Sciences Free Communication Day, held on May 4th, 2021. Abstract titles include: Local Restaurants’ Marketing and Sponsorship Within Collegiate Athletics Preparing the Future of Campus Recreation Motivational Factors Influencing College Choice: NCAA Division I Female Volleyball Athletes The Significance of a Successful Internship Program Foundations of Publicly Subsidized Sport Stadiums: The Case of U.S. Bank Stadium Enhancing Member Experience During a Pandemic The Risk of Depression in Football Players Diagnosed with a Concussion Effectiveness of Color-Tinted Glasses in Reducing Photophobia in Patients Diagnosed with Mild Traumatic Brain Injury or Concussion Policies Surrounding Transgender Athletes and Participation in Competitive Sports Carbon Fiber Insole’s Effect on Running Mechanics in Recreational Runners Comprehensive Analysis of School Wellness Policy Toolkits Fasting for Weight Loss Lactate Supplementation on Exercise Performance Dietitian Involvement in Protein Recommendation Research for AthletesProject title:Supplementation of Omega-3 Polyunsaturated Fatty Acids Improves Recovery and Exercise Performance in Healthy Adults. A Narrative Review of Grocery Store Interventions on Improving Healthy Food Purchases The Relationship Between American Indian’s Socioeconomic Status, Diet, & Gut Microbiome: A Preliminary Research Study Role of Omega-3 Fatty Acids on Pregnancy, Fetal, and Infant Development The Relationship of Blood Serum Levels of Vitamin B6, Folate, and Vitamin B12 on Depressive Symptoms in Adults Aged 18-65

    Ring test evaluation of the detection of influenza A virus in swine oral fluids by real-time reverse-transcription polymerase chain reaction and virus isolation

    Get PDF
    The probability of detecting influenza A virus (IAV) in oral fluid (OF) specimens was calculated for each of 13 assays based on real-time reverse-transcription polymerase chain reaction (rRT-PCR) and 7 assays based on virus isolation (VI). The OF specimens were inoculated with H1N1 or H3N2 IAV and serially diluted 10-fold (10(-1) to 10(-8)). Eight participating laboratories received 180 randomized OF samples (10 replicates Ă— 8 dilutions Ă— 2 IAV subtypes plus 20 IAV-negative samples) and performed the rRT-PCR and VI procedure(s) of their choice. Analysis of the results with a mixed-effect logistic-regression model identified dilution and assay as variables significant (P \u3c 0.0001) for IAV detection in OF by rRT-PCR or VI. Virus subtype was not significant for IAV detection by either rRT-PCR (P = 0.457) or VI (P = 0.101). For rRT-PCR the cycle threshold (Ct) values increased consistently with dilution but varied widely. Therefore, it was not possible to predict VI success on the basis of Ct values. The success of VI was inversely related to the dilution of the sample; the assay was generally unsuccessful at lower virus concentrations. Successful swine health monitoring and disease surveillance require assays with consistent performance, but significant differences in reproducibility were observed among the assays evaluated

    Hard plant tissues do not contribute meaningfully to dental microwear : evolutionary implications

    Get PDF
    Abstract: Reconstructing diet is critical to understanding hominin adaptations. Isotopic and functional morphological analyses of early hominins are compatible with consumption of hard foods, such as mechanically-protected seeds, but dental microwear analyses are not. The protective shells surrounding seeds are thought to induce complex enamel surface textures characterized by heavy pitting, but these are absent on the teeth of most early hominins. Here we report nanowear experiments showing that the hardest woody shells – the hardest tissues made by dicotyledonous plants – cause very minor damage to enamel but are themselves heavily abraded (worn) in the process. Thus, hard plant tissues do not regularly create pits on enamel surfaces despite high forces clearly being associated with their oral processing. We conclude that hard plant tissues barely inuence microwear textures and the exploitation of seeds from graminoid plants such as grasses and sedges could have formed a critical element in the dietary ecology of hominins

    Globalization And Fashion: How Have Japanese Fashion Subcultures Been Effected?

    No full text
    The purpose of this presentation is to explore what globalization has meant for Japan in terms of cultural affluence, especially in relation to Japanese fashion and Tokyo street styles. Since the late 1990’s there has been growth in desire for Japanese popular culture and fashion. With the development of technology and expansion of our communicative reach, many people across the world were able to discover the unique styles of Lolita, Decora, and other styles that wander the streets of Harajuku. This project discusses the history of Japanese fashion styles by comparing it to Western styles and consider the effects that this adoption of culture has had on Japan and the rest of the world
    • …
    corecore