3,108 research outputs found

    An Efficient Method of Modeling Material Properties Using a Thermal Diffusion Analogy: An Example Based on Craniofacial Bone

    Get PDF
    The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of bone. However, bone's complicated geometry makes it difficult to incorporate complex material models into finite element models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our analysis addresses this problem by taking full advantage of a finite element program's ability to solve thermal-structural problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model. Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and effective method of spatially varying modulus. Results compare favorably against both experimental data and results from an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the ability to easily incorporate more material property data into their finite element models in an effort to improve the model's accuracy

    Drimolen cranium DNH 155 documents microevolution in an early hominin species

    Get PDF
    Paranthropus robustus is a small-brained extinct hominin from South Africa characterized by derived, robust craniodental morphology. The most complete known skull of this species is DNH 7 from Drimolen Main Quarry, which differs from P. robustus specimens recovered elsewhere in ways attributed to sexual dimorphism. Here, we describe a new fossil specimen from Drimolen Main Quarry, dated from approximately 2.04–1.95 million years ago, that challenges this view. DNH 155 is a well-preserved adult male cranium that shares with DNH 7 a suite of primitive and derived features unlike those seen in adult P. robustus specimens from other chronologically younger deposits. This refutes existing hypotheses linking sexual dimorphism, ontogeny and social behaviour within this taxon, and clarifies hypotheses concerning hominin phylogeny. We document small-scale morphological changes in P. robustus associated with ecological change within a short time frame and restricted geography. This represents the most highly resolved evidence yet of microevolutionary change within an early hominin species

    Seagrass spatial data synthesis from north-east Australia, Torres Strait and Gulf of Carpentaria, 1983 to 2022

    Get PDF
    The Gulf of Carpentaria and Torres Strait in north-eastern Australia support globally significant seagrass ecosystems that underpin fishing and cultural heritage of the region. Reliable data on seagrass distribution are critical to understanding how these ecosystems are changing, while managing for resilience. Spatial data on seagrass have been collected since the early 1980s, but the early data were poorly curated. Some was not publicly available, and some already lost. We validated and synthesized historical seagrass spatial data to create a publicly available database. We include a site layer of 48,612 geolocated data points including information on seagrass presence/absence, sediment, collection date, and data custodian. We include a polygon layer with 641 individual seagrass meadows. Thirteen seagrass species are identified in depths ranging from intertidal to 38 m below mean sea level. Our synthesis includes scientific survey data from 1983 to 2022 and provides an important evidence base for marine resource management

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore