7 research outputs found
Universal K-matrix distribution in beta=2 ensembles of random matrices
11 pages; published version (added proportionality constants, minor changes)YVF and AN were supported by EPSRC grant EP/J002763/1 'Insights into Disordered Landscapes via Random Matrix Theory and Statistical Mechanics'
An exact formula for general spectral correlation function of random Hermitian matrices
We have found an exact formula expressing a general correlation function
containing both products and ratios of characteristic polynomials of random
Hermitian matrices. The answer is given in the form of a determinant. An
essential difference from the previously studied correlation functions (of
products only) is the appearance of non-polynomial functions along with the
orthogonal polynomials. These non-polynomial functions are the Cauchy
transforms of the orthogonal polynomials. The result is valid for any ensemble
of beta=2 symmetry class and generalizes recent asymptotic formulae obtained
for GUE and its chiral counterpart by different methods..Comment: published version, with a few misprints correcte
Real roots of Random Polynomials: Universality close to accumulation points
We identify the scaling region of a width O(n^{-1}) in the vicinity of the
accumulation points of the real roots of a random Kac-like polynomial
of large degree n. We argue that the density of the real roots in this region
tends to a universal form shared by all polynomials with independent,
identically distributed coefficients c_i, as long as the second moment
\sigma=E(c_i^2) is finite. In particular, we reveal a gradual (in contrast to
the previously reported abrupt) and quite nontrivial suppression of the number
of real roots for coefficients with a nonzero mean value \mu_n = E(c_i) scaled
as \mu_n\sim n^{-1/2}.Comment: Some minor mistakes that crept through into publication have been
removed. 10 pages, 12 eps figures. This version contains all updates, clearer
pictures and some more thorough explanation
Products and Ratios of Characteristic Polynomials of Random Hermitian Matrices
We present new and streamlined proofs of various formulae for products and
ratios of characteristic polynomials of random Hermitian matrices that have
appeared recently in the literature.Comment: 18 pages, LaTe
Random Matrices close to Hermitian or unitary: overview of methods and results
The paper discusses progress in understanding statistical properties of
complex eigenvalues (and corresponding eigenvectors) of weakly non-unitary and
non-Hermitian random matrices. Ensembles of this type emerge in various
physical contexts, most importantly in random matrix description of quantum
chaotic scattering as well as in the context of QCD-inspired random matrix
models.Comment: Published version, with a few more misprints correcte