1,453 research outputs found

    Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates

    Get PDF
    Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins

    Performance improvement by temperature control of an open-cathode PEM fuel cell system

    Get PDF
    The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open-cathode, self-humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer (CCL) due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst-drying effect on performance complicate the optimal thermal management with model-free control strategies.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    The mRNA expression of SETD2 in human breast cancer: Correlation with clinico-athological parameters

    Get PDF
    BACKGROUND: SET domain containing protein 2 (SETD2) is a histone methyltransferase that is involved in transcriptional elongation. There is evidence that SETD2 interacts with p53 and selectively regulates its downstream genes. Therefore, it could be implicated in the process of carcinogenesis. Furthermore, this gene is located on the short arm of chromosome 3p and we previously demonstrated that the 3p21.31 region of chromosome 3 was associated with permanent growth arrest of breast cancer cells. This region includes closely related genes namely: MYL3, CCDC12, KIF9, KLHL18 and SETD2. Based on the biological function of these genes, SETD2 is the most likely gene to play a tumour suppressor role and explain our previous findings. Our objective was to determine, using quantitative PCR, whether the mRNA expression levels of SETD2 were consistent with a tumour suppressive function in breast cancer. This is the first study in the literature to examine the direct relationship between SETD2 and breast cancer. METHODS: A total of 153 samples were analysed. The levels of transcription of SETD2 were determined using quantitative PCR and normalized against (CK19). Transcript levels within breast cancer specimens were compared to normal background tissues and analyzed against conventional pathological parameters and clinical outcome over a 10 year follow-up period. RESULTS: The levels of SETD2 mRNA were significantly lower in malignant samples (p = 0.0345) and decreased with increasing tumour stage. SETD2 expression levels were significantly lower in samples from patients who developed metastasis, local recurrence, or died of breast cancer when compared to those who were disease free for > 10 years (p = 0.041). CONCLUSION: This study demonstrates a compelling trend for SETD2 transcription levels to be lower in cancerous tissues and in patients who developed progressive disease. These findings are consistent with a possible tumour suppressor function of this gene in breast cancer

    An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1

    Get PDF
    The protein stability and chromatin functions of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) are regulated in a cell-cycle-dependent manner. We report a structural characterization of the complex between UHRF1 and the deubiquitinase USP7. The first two UBL domains of USP7 bind to the polybasic region (PBR) of UHRF1, and this interaction is required for the USP7-mediated deubiquitination of UHRF1. Importantly, we find that the USP7-binding site of the UHRF1 PBR overlaps with the region engaging in an intramolecular interaction with the N-terminal tandem Tudor domain (TTD). We show that the USP7-UHRF1 interaction perturbs the TTD-PBR interaction of UHRF1, thereby shifting the conformation of UHRF1 from a TTD- occluded state to a state open for multivalent histone binding. Consistently, introduction of a USP7-interaction-defective mutation to UHRF1 significantly reduces its chromatin association. Together, these results link USP7 interaction to the dynamic deubiquitination and chromatin association of UHRF1

    DNA Replication Origin Function Is Promoted by H3K4 Di-methylation in Saccharomyces cerevisiae

    Get PDF
    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication
    corecore