5 research outputs found

    The systemic inhibition of the terminal complement system reduces neuroinflammation but does not improve motor function in mouse models of CMT1A with overexpressed PMP22

    No full text
    Charcot-Marie-Tooth disease type 1A (CMT1A) is the most prevalent hereditary demyelinating neuropathy. This autosomal, dominantly inherited disease is caused by a duplication on chromosome 17p which includes the peripheral myelin protein 22 (PMP22) gene. There is clinical evidence that the disability in CMT1A is to a large extend due to axonal damage rather than demyelination. Over-expression of PMP22 is recently thought to impede cholesterol trafficking causing a total shutdown of local cholesterol and lipid synthesis in the Schwann cells, thus disturbing their ability to remyelinate. But there is a large variety in disease burden between CMT1A patients with the same genetic defect, indicating the presence of modifying factors that affect disease severity. One of these potential factors is the immune system. Several reports have described patients with co-occurrence of CMT1A with chronic inflammatory demyelinating disease or Guillain-Barré syndrome. We have previously shown in multiple animal models that the innate immune system and specifically the terminal complement system is a driver of inflammatory demyelination. To test the contribution of the terminal complement system to neuroinflammation and disease progression in CMT1A, we inhibited systemic complement C6 in two transgenic mouse models for CMT1A, the C3-PMP22 and C3-PMP22 c-JunP0Cre models. Both models over-express human PMP22, and one (C3-PMP22 c-JunP0Cre) also has a Schwann cell-specific knockout of c-Jun, a crucial regulator of myelination controlling autophagy. We found that systemic inhibition of C6 using antisense oligonucleotides affects the neuroinflammation, Rho GTPase and ERK/MAPK signalling pathways in the CMT1A mouse models. The cholesterol synthesis pathway remained unaffected. Analysis of motor function during treatment with C6 antisense oligonucleotides did not reveal any significant improvement in the CMT1A mouse models. This study shows that the contribution of the terminal complement system to progressive loss of motor function in the CMT1A mouse models tested is limited

    The impact of hyperbaric oxygen therapy on late irradiation injury in oral microcirculation

    No full text
    Background: Late side effects of radiotherapy in patients with head and neck cancer (HNCPs) result in decreased tissue vascularity, a compromised healing capacity and spontaneous breakdown of tissue. The aim of this study was to examine the in vivo effect of hyperbaric oxygen therapy (HBOT) on the microcirculation in irradiated oral tissue. Methods: Using a handheld microscope, the effect of HBOT on oral mucosal microcirculation parameters was measured in 34 previously irradiated HNCPs prior to HBOT and at 4 weeks and 6 months posttreatment. Results: A significant increase in mean buccal vessel density and decrease in buccal vessel diameter was found 6 months after HBOT compared to baseline, 22 ± 11 versus 25 ± 7 cpll/mm2 (p < 0.05) and 20 ± 4 versus 16 ± 5 μm (p < 0.05), respectively. Conclusion: Our results indicate that oral microcirculation histopathology associated with irradiation is able to respond to HBOT by redirecting oral microcirculation parameters towards values consistent with healthy tissue

    Vanishing white matter: deregulated integrated stress response as therapy target

    No full text
    Objective: Vanishing white matter (VWM) is a fatal, stress-sensitive leukodystrophy that mainly affects children and is currently without treatment. VWM is caused by recessive mutations in eukaryotic initiation factor 2B (eIF2B) that is crucial for initiation of mRNA translation and its regulation during the integrated stress response (ISR). Mutations reduce eIF2B activity. VWM pathomechanisms remain unclear. In contrast with the housekeeping function of eIF2B, astrocytes are selectively affected in VWM. One study objective was to test our hypothesis that in the brain translation of specific mRNAs is altered by eIF2B mutations, impacting primarily astrocytes. The second objective was to investigate whether modulation of eIF2B activity could ameliorate this altered translation and improve the disease. Methods: Mice with biallelic missense mutations in eIF2B that recapitulate human VWM were used to screen for mRNAs with altered translation in brain using polysomal profiling. Findings were verified in brain tissue from VWM patients using qPCR and immunohistochemistry. The compound ISRIB (for “ISR inhibitor”) was administered to VWM mice to increase eIF2B activity. Its effect on translation, neuropathology, and clinical signs was assessed. Results: In brains of VWM compared to wild-type mice we observed the most prominent changes in translation concerning ISR mRNAs; their expression levels correlated with disease severity. We substantiated these findings in VWM patients’ brains. ISRIB normalized expression of mRNA markers, ameliorated brain white matter pathology and improved motor skills in VWM mice. Interpretation: The present findings show that ISR deregulation is central in VWM pathomechanisms and a viable target for therapy

    Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE2, which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did not affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor
    corecore