130 research outputs found

    Formation of PbSe/CdSe Core/Shell Nanocrystals for Stable Near-Infrared High Photoluminescence Emission

    Get PDF
    PbSe/CdSe core/shell nanocrystals with quantum yield of 70% were obtained by the “successive ion layer adsorption and reaction” technology in solution. The thickness of the CdSe shell was exactly controlled. A series of spectral red shifts with the CdSe shell growth were observed, which was attributed to the combined effect of the surface polarization and the expansion of carriers’ wavefunctions. The stability of PbSe nanocrystals was tremendously improved with CdSe shells

    Functionalized Mesoporous SBA-15 with CeF3: Eu3+ Nanoparticle by Three Different Methods: Synthesis, Characterization, and Photoluminescence

    Get PDF
    Luminescence functionalization of the ordered mesoporous SBA-15 silica is realized by depositing a CeF3: Eu3+ phosphor layer on its surface (denoted as CeF3: Eu3+/SBA-15/IS, CeF3: Eu3+/SBA-15/SI and CeF3: Eu3+/SBA-15/SS) using three different methods, which are reaction in situ (I-S), solution impregnation (S-I) and solid phase grinding synthesis (S-S), respectively. The structure, morphology, porosity, and optical properties of the materials are well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption, and photoluminescence spectra. These materials all have high surface area, uniformity in the mesostructure and crystallinity. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the CeF3: Eu3+ nanophosphors. Furthermore, the efficient energy transfer in mesoporous material mainly occurs between the Ce3+ and the central Eu3+ ion. They show the characteristic emission of Ce3+ 5d → 4f (200–320 nm) and Eu3+5D0 → 7FJ(J = 1–4, with 5D0 → 7F1 orange emission at 588 nm as the strongest one) transitions, respectively. In addition, for comparison, the mesoporous material CeF3: Eu3+/SBA-15/SS exhibits the characteristic emission of Eu3+ ion under UV irradiation with higher luminescence intensity than the other materials
    • 

    corecore