20 research outputs found

    The influence of additive manufacturing (3D printing) on susceptibility to environmentally induced fracture

    Get PDF
    Please click Additional Files below to see the full abstract

    A Loading Device for Fracture Testing of Compact Tension Specimens in the Scanning Electron Microscope

    Get PDF
    A loading device for performing fracture experiments on compact tension specimens in the SEM has been designed. Its key elements are a piezoelectric translator for applying controlled displacements to the loading points on the specimen and a load cell to measure applied loads. The effective transmission of displacement from the piezoelectric driver to the specimen was found to be the major mechanical design problem. The peripheral equipment includes a function generator and a high voltage amplifier that drives the piezoelectric translator as well as a video overlay and standard video equipment to record the image continuously during the course of the experiment. A case study on alumina describes qualitative observations on the toughening mechanism, crack-interface bridging, operating in this material. Quantitative information pertaining to the closure stresses associated with this toughening mode can be obtained by measuring the crack profile

    Magnesium: Applications and advanced processing in the automotive industry

    No full text

    Shaping, Forming and Modeling of Advanced High Strength Steel

    No full text

    Editorial

    No full text

    Solid-State Transformation of an Additive Manufactured Inconel 625 Alloy at 700 °C

    No full text
    Inconel 625, a nickel-based superalloy, has drawn much attention in the emerging field of additive manufacturing (AM) because of its excellent weldability and resistance to hot cracking. The extreme processing condition of AM often introduces enormous residual stress (hundreds of MPa to GPa) in the as-fabricated parts, which requires stress-relief heat treatment to remove or reduce the internal stresses. Typical residual stress heat treatment for AM Inconel 625, conducted at 800 °C or 870 °C, introduces a substantial precipitation of the δ phase, a deleterious intermetallic phase. In this work, we used synchrotron-based in situ scattering and diffraction methods and ex situ electron microscopy to investigate the solid-state transformation of an AM Inconel 625 at 700 °C. Our results show that while the δ phase still precipitates from the matrix at this temperature, its precipitation rate and size at a given time are both smaller when compared with their counterparts during typical heat treatment temperatures of 800 °C and 870 °C. A comparison with thermodynamic modeling predictions elucidates these experimental findings. Our work provides the rigorous microstructural kinetics data required to explore the feasibility of a promising lower-temperature stress-relief heat treatment for AM Inconel 625. The combined methodology is readily extendable to investigate the solid-state transformation of other AM alloys

    How Austenitic Is a Martensitic Steel Produced by Laser Powder Bed Fusion? A Cautionary Tale

    No full text
    Accurate phase fraction analysis is an essential element of the microstructural characterization of alloys and often serves as a basis to quantify effects such as heat treatment or mechanical deformation. Additive manufacturing (AM) of metals, due to the intrinsic nonequilibrium solidification and spatial variability, creates additional challenges for the proper quantification of phase fraction. Such challenges are exacerbated when the alloy itself is prone to deformation-induced phase transformation. Using commonly available in-house X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) and less commonly used synchrotron-based high-energy X-ray diffraction, we characterized nitrogen-atomized 17-4 precipitation-hardening martensitic stainless steel, a class of AM alloy that has received broad attention within the AM research community. On the same build, our measurements recovered the entire range of reported values on the austenite phase fractions of as-built AM 17-4 in literature, from ≈100% martensite to ≈100% austenite. Aided by Calphad simulation, our experimental findings established that our as-built AM 17-4 is almost fully austenitic and that in-house XRD and EBSD measurements are subject to significant uncertainties created by the specimen’s surface finish. Hence, measurements made using these techniques must be understood in their correct context. Our results carry significant implications, not only to AM 17-4 but also to AM alloys that are susceptible to deformation-induced structure transformation and suggest that characterizations with less accessible but bulk sensitive techniques such as synchrotron-based high energy X-ray diffraction or neutron diffraction may be required for proper understanding of these materials

    How Austenitic Is a Martensitic Steel Produced by Laser Powder Bed Fusion? A Cautionary Tale

    No full text
    Accurate phase fraction analysis is an essential element of the microstructural characterization of alloys and often serves as a basis to quantify effects such as heat treatment or mechanical deformation. Additive manufacturing (AM) of metals, due to the intrinsic nonequilibrium solidification and spatial variability, creates additional challenges for the proper quantification of phase fraction. Such challenges are exacerbated when the alloy itself is prone to deformation-induced phase transformation. Using commonly available in-house X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) and less commonly used synchrotron-based high-energy X-ray diffraction, we characterized nitrogen-atomized 17-4 precipitation-hardening martensitic stainless steel, a class of AM alloy that has received broad attention within the AM research community. On the same build, our measurements recovered the entire range of reported values on the austenite phase fractions of as-built AM 17-4 in literature, from ≈100% martensite to ≈100% austenite. Aided by Calphad simulation, our experimental findings established that our as-built AM 17-4 is almost fully austenitic and that in-house XRD and EBSD measurements are subject to significant uncertainties created by the specimen’s surface finish. Hence, measurements made using these techniques must be understood in their correct context. Our results carry significant implications, not only to AM 17-4 but also to AM alloys that are susceptible to deformation-induced structure transformation and suggest that characterizations with less accessible but bulk sensitive techniques such as synchrotron-based high energy X-ray diffraction or neutron diffraction may be required for proper understanding of these materials
    corecore