4 research outputs found

    Advanced Situated Tutors: Design, Philosophy, and a Review of Existing Systems

    No full text
    Situated tutors combine intelligent, adaptive instructional technology with a simulated environment that allows trainees to explore the context, knowledge, applications, and social interactions inherent in the real-world equivalent. However, the situated tutor construct is, as yet, only superficially described. Thus, this paper seeks to add to the academic conceptualization of situated tutors by clearly defining these systems and their features. We go on to define advanced situated tutors as the most robust class of situated tutors, and then give examples of such systems

    Measurement of the branching fractions for Cabibbo-suppressed decays D+K+Kπ+π0D^{+}\to K^{+} K^{-}\pi^{+}\pi^{0} and D(s)+K+ππ+π0D_{(s)}^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0} at Belle

    No full text
    International audienceWe present measurements of the branching fractions for the singly Cabibbo-suppressed decays D+K+Kπ+π0D^+\to K^{+}K^{-}\pi^{+}\pi^{0} and Ds+K+ππ+π0D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}, and the doubly Cabibbo-suppressed decay D+K+ππ+π0D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}, based on 980 fb1{\rm fb}^{-1} of data recorded by the Belle experiment at the KEKB e+ee^{+}e^{-} collider. We measure these modes relative to the Cabibbo-favored modes D+Kπ+π+π0D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0} and Ds+K+Kπ+π0D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}. Our results for the ratios of branching fractions are B(D+K+Kπ+π0)/B(D+Kπ+π+π0)=(11.32±0.13±0.26)%B(D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0})/B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) = (11.32 \pm 0.13 \pm 0.26)\%, B(D+K+ππ+π0)/B(D+Kπ+π+π0)=(1.68±0.11±0.03)%B(D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})/B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) = (1.68 \pm 0.11\pm 0.03)\%, and B(Ds+K+ππ+π0)/B(Ds+K+Kπ+π0)=(17.13±0.62±0.51)%B(D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})/B(D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}) = (17.13 \pm 0.62 \pm 0.51)\%, where the uncertainties are statistical and systematic, respectively. The second value corresponds to (5.83±0.42)×tan4θC(5.83\pm 0.42)\times\tan^4\theta_C, where θC\theta_C is the Cabibbo angle; this value is larger than other measured ratios of branching fractions for a doubly Cabibbo-suppressed charm decay to a Cabibbo-favored decay. Multiplying these results by world average values for B(D+Kπ+π+π0)B(D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0}) and B(Ds+K+Kπ+π0)B(D_s^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}) yields B(D+K+Kπ+π0)=(7.08±0.08±0.16±0.20)×103B(D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0})= (7.08\pm 0.08\pm 0.16\pm 0.20)\times10^{-3}, B(D+K+ππ+π0)=(1.05±0.07±0.02±0.03)×103B(D^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0})= (1.05\pm 0.07\pm 0.02\pm 0.03)\times10^{-3}, and B(Ds+K+ππ+π0)=(9.44±0.34±0.28±0.32)×103B(D_s^{+}\to K^{+}\pi^{-}\pi^{+}\pi^{0}) = (9.44\pm 0.34\pm 0.28\pm 0.32)\times10^{-3}, where the third uncertainty is due to the branching fraction of the normalization mode. The first two results are consistent with, but more precise than, the current world averages. The last result is the first measurement of this branching fraction

    Measurement of the B+/B0B^+/B^0 production ratio in e+ee^+e^- collisions at the Υ(4S)\Upsilon(4S) resonance using BJ/ψ()KB \rightarrow J/\psi(\ell\ell) K decays at Belle

    No full text
    We measure the ratio of branching fractions for the Υ(4S)\Upsilon (4S) decays to B+BB^+B^- and B0Bˉ0B^0\bar{B}{}^0 using B+J/ψ()K+B^+ \rightarrow J/\psi(\ell\ell) K^+ and B0J/ψ()K0B^0 \rightarrow J/\psi(\ell\ell) K^0 samples, where J/ψ()J/\psi(\ell\ell) stands for J/ψ+J/\psi \to \ell^+\ell^- (=e\ell = e or μ\mu), with 711711 fb1^{-1} of data collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector. We find the decay rate ratio of Υ(4S)B+B\Upsilon(4S) \rightarrow B^+B^- over Υ(4S)B0Bˉ0\Upsilon(4S) \rightarrow B^0\bar{B}{}^0 to be 1.065±0.012±0.019±0.0471.065\pm0.012\pm 0.019 \pm 0.047, which is the most precise measurement to date. The first and second uncertainties are statistical and systematic, respectively, and the third uncertainty is systematic due to the assumption of isospin symmetry in BJ/ψ()KB \to J/\psi(\ell\ell) K
    corecore