101 research outputs found

    Differential Expression of Immune Response Genes in Steller Sea Lions (\u3ci\u3eEumetopias jubatus\u3c/i\u3e): An Indicator of Ecosystem Health?

    Get PDF
    Characterization of the polygenic and polymorphic features of the Steller sea lion major histocompatibility complex (MHC) provides an ideal window for evaluating immunologic vigor of the population and identifying emergence of new genotypes that reflect ecosystem pressures. MHC genotyping can be used to measure the potential immunologic vigor of a population. However, since ecosystem-induced changes to MHC genotype can be slow to emerge, measurement of differential expression of these genes can potentially provide real-time evidence of immunologic perturbations. MHC DRB genes were cloned and sequenced using peripheral blood mononuclear leukocytes derived from 10 Steller sea lions from southeast Alaska, Prince William Sound, and the Aleutian Islands. Nine unique DRB gene sequences were represented in each of ten animals. MHC DRB gene expression was measured in a subset of six sea lions. Although DRB in genomic DNA was identical in all individuals, relative levels of expressed DRB mRNA was highly variable. Selective suppression of MHC DRB genes could be indicative of geographically disparate environmental pressures, thereby serving as an immediate and sensitive indicator of population and ecosystem health

    Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    Get PDF
    Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i) increase nutrient availability for production of high yielding, high quality crops; (ii) protect crops from pests, pathogens, weeds; and (iii) manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation

    The KMOS Cluster Survey (KCS). I. The Fundamental Plane and the Formation Ages of Cluster Galaxies at Redshift 1.4 < Z < 1.6

    Get PDF
    We present the analysis of the fundamental plane (FP) for a sample of 19 massive red-sequence galaxies (M⋆>4×1010{M}_{\star }\gt 4\times {10}^{10} M⊙{M}_{\odot }) in three known overdensities at 1.39<z<1.611.39\lt z\lt 1.61 from the K-band Multi-object Spectrograph (KMOS) Cluster Survey, a guaranteed-time program with spectroscopy from the KMOS at the VLT and imaging from the Hubble Space Telescope. As expected, we find that the FP zero-point in B band evolves with redshift, from the value 0.443 of Coma to −0.10 ± 0.09, −0.19 ± 0.05, and −0.29 ± 0.12 for our clusters at z = 1.39, z = 1.46, and z = 1.61, respectively. For the most massive galaxies (logM⋆/M⊙>11\mathrm{log}{M}_{\star }/{M}_{\odot }\gt 11) in our sample, we translate the FP zero-point evolution into a mass-to-light-ratio M/L evolution, finding ΔlogM/LB=(−0.46±0.10)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.46\pm 0.10)z, ΔlogM/LB=(−0.52±0.07)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.52\pm 0.07)z, to ΔlogM/LB=(−0.55±0.10)z{\rm{\Delta }}\mathrm{log}M/{L}_{B}=(-0.55\pm 0.10)z, respectively. We assess the potential contribution of the galaxy structural and stellar velocity dispersion evolution to the evolution of the FP zero-point and find it to be ~6%–35% of the FP zero-point evolution. The rate of M/L evolution is consistent with galaxies evolving passively. Using single stellar population models, we find an average age of 2.33−0.51+0.86{2.33}_{-0.51}^{+0.86} Gyr for the logM⋆/M⊙>11\mathrm{log}{M}_{\star }/{M}_{\odot }\gt 11 galaxies in our massive and virialized cluster at z = 1.39, 1.59−0.62+1.40{1.59}_{-0.62}^{+1.40} Gyr in a massive but not virialized cluster at z = 1.46, and 1.20−0.47+1.03{1.20}_{-0.47}^{+1.03} Gyr in a protocluster at z = 1.61. After accounting for the difference in the age of the universe between redshifts, the ages of the galaxies in the three overdensities are consistent within the errors, with possibly a weak suggestion that galaxies in the most evolved structure are older

    The KMOS Cluster Survey (KCS) II - The Effect of Environment on the Structural Properties of Massive Cluster Galaxies at Redshift 1.391.611.39 1.61

    Get PDF
    We present results on the structural properties of massive passive galaxies in three clusters at 1.39<z<1.61 from the KMOS Cluster Survey. We measure light-weighted and mass-weighted sizes from optical and near-infrared Hubble Space Telescope imaging and spatially resolved stellar mass maps. The rest-frame R-band sizes of these galaxies are a factor of ∼2−3 smaller than their local counterparts. The slopes of the relation between the stellar mass and the light-weighted size are consistent with recent studies in clusters and the field. Their mass-weighted sizes are smaller than the rest frame R-band sizes, with an average mass-weighted to light-weighted size ratio that varies between ∼0.45 and 0.8 among the clusters. We find that the median light-weighted size of the passive galaxies in the two more evolved clusters is ∼24% larger than for field galaxies, independent of the use of circularized effective radii or semi-major axes. These two clusters also show a smaller size ratio than the less evolved cluster, which we investigate using color gradients to probe the underlying M∗/LH160 gradients. The median color gradients are ∇z−H∼−0.4 mag dex−1, twice the local value. Using stellar populations models, these gradients are best reproduced by a combination of age and metallicity gradients. Our results favor the minor merger scenario as the dominant process responsible for the observed galaxy properties and the environmental differences at this redshift. The environmental differences support that clusters experience accelerated structural evolution compared to the field, likely via an epoch of enhanced minor merger activity during cluster assembly

    Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39

    Get PDF
    We analyse the sizes, colour gradients and resolved stellar mass distributions for 36 massive and passive galaxies in the cluster XMMUJ2235-2557 at z = 1.39 using optical and near-infrared Hubble Space Telescope (HST) imaging. We derive light-weighted Sérsic fits in five HST bands (i775, z850, Y105, J125, H160), and find that the size decreases by ~20 per cent going from i775 to H160 band, consistent with recent studies. We then generate spatially resolved stellar mass maps using an empirical relationship between M*/LH160 and (z850- H160) and use these to derive mass-weighted Sérsic fits: the mass-weighted sizes are ~41 per cent smaller than their rest-frame r-band counterparts compared with an average of ~12 per cent at z ~ 0. We attribute this evolution to the evolution in the M*/LH160 and colour gradient. Indeed, as expected, the ratio of mass-weighted to light-weighted size is correlated with the M*/L gradient, but is also mildly correlated with the mass surface density and mass-weighted size. The colour gradients (∇z- H) are mostly negative, with a median value of ~0.45 mag dex-1, twice the local value. The evolution is caused by an evolution in age gradients along the semimajor axis (a), with ∇age = dlog (age)/dlog (a) ~- 0.33, while the survival of weaker colour gradients in old, local galaxies implies that metallicity gradients are also required, with ∇Z = dlog (Z)/dlog (a) ~- 0.2. This is consistent with recent observational evidence for the inside-out growth of passive galaxies at high redshift, and favours a gradual mass growth mechanism, such as minor mergers

    Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure

    Get PDF
    Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinant

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
    • …
    corecore