276 research outputs found

    Orthogonality catastrophe in a composite fermion liquid

    Full text link
    We discuss the emergence of an orthogonality catastrophe in the response of a composite fermion liquid as the filling factor \nu approaches 1/2m, where m=1,2,3.... A tunneling experiment is proposed in which dramatic changes in the I-V characteristic should be observable as \nu is varied. Explicit I-V characteristics calculated within the so-called Modified Random Phase Approximation, are provided for \nu=1/3 -> \nu=1/2.Comment: Latex two-column 6 pages including 5 figure

    Spin Susceptibility of an Ultra-Low Density Two Dimensional Electron System

    Full text link
    We determine the spin susceptibility in a two dimensional electron system in GaAs/AlGaAs over a wide range of low densities from 2×109\times10^{9}cm−2^{-2} to 4×1010\times10^{10}cm−2^{-2}. Our data can be fitted to an equation that describes the density dependence as well as the polarization dependence of the spin susceptibility. It can account for the anomalous g-factors reported recently in GaAs electron and hole systems. The paramagnetic spin susceptibility increases with decreasing density as expected from theoretical calculations.Comment: 5 pages, 2 eps figures, to appear in PR

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time Ï„01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    Experimental studies of the fractional quantum Hall effect in the first excited Landau level

    Full text link
    We present a spectrum of experimental data on the fractional quantum Hall effect (FQHE) states in the first excited Landau level, obtained in an ultrahigh mobility two-dimensional electron system (2DES) and at very low temperatures and report the following results: For the even-denominator FQHE states, the sample dependence of the nu=5/2 state clearly shows that disorder plays an important role in determining the energy gap at nu=5/2. For the developing nu=19/8 FQHE state the temperature dependence of the Rxx minimum implies an energy gap of ~5mK.The energy gaps of the odd-denominator FQHE states at nu=7/3 and 8/3 also increase with decreasing disorder, similar to the gap at 5/2 state. Unexpectedly and contrary to earlier data on lower mobility samples, in this ultra-high quality specimen, the nu=13/5 state is missing, while its particle-hole conjugate state, the nu=12/5 state, is a fully developed FQHE state. We speculate that this disappearance might indicate a spin polarization of the nu=13/5 state. Finally, the temperature dependence is studied for the two-reentrant integer quantum Hall states around nu=5/2 and is found to show a very narrow temperature range for the transition from quantized to classical value.Comment: to be publishe

    Reorientation of Anisotropy in a Square Well Quantum Hall Sample

    Full text link
    We have measured magnetotransport at half-filled high Landau levels in a quantum well with two occupied electric subbands. We find resistivities that are {\em isotropic} in perpendicular magnetic field but become strongly {\em anisotropic} at ν\nu = 9/2 and 11/2 on tilting the field. The anisotropy appears at an in-plane field, Bip∼B_{ip} \sim 2.5T, with the easy-current direction {\em parallel} to BipB_{ip} but rotates by 90∘^{\circ} at Bip∼B_{ip} \sim 10T and points now in the same direction as in single-subband samples. This complex behavior is in quantitative agreement with theoretical calculations based on a unidirectional charge density wave state model.Comment: 4 pages, 4 figure

    Two-subband electron transport in nonideal quantum wells

    Full text link
    Electron transport in nonideal quantum wells (QW) with large-scale variations of energy levels is studied when two subbands are occupied. Although the mean fluctuations of these two levels are screened by the in-plane redistribution of electrons, the energies of both levels remain nonuniform over the plane. The effect of random inhomogeneities on the classical transport is studied within the framework of a local response approach for weak disorder. Both short-range and small-angle scattering mechanisms are considered. Magnetotransport characteristics and the modulation of the effective conductivity by transverse voltage are evaluated for different kinds of confinement potentials (hard wall QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure

    Experimental evidence for the formation of stripe phases in Si/SiGe

    Get PDF
    We observe pronounced transport anisotropies in magneto-transport experiments performed in the two-dimensional electron system of a Si/SiGe heterostructure. They occur when an in-plane field is used to tune two Landau levels with opposite spin to energetic coincidence. The observed anisotropies disappear drastically for temperatures above 1 K. We propose that our experimental findings may be caused by the formation of a unidirectional stripe phase oriented perpendicular to the in-plane field.Comment: 4 pages, 3 figure

    Highly Anisotropic Transport in the Integer Quantum Hall Effect

    Full text link
    At very large tilt of the magnetic (B) field with respect to the plane of a two-dimensional electron system the transport in the integer quantum Hall regime at ν\nu = 4, 6, and 8 becomes strongly anisotropic. At these filling factors the usual {\em deep minima} in the magneto-resistance occur for the current flowing {\em perpendicular} to the in-plane B field direction but develop into {\em strong maxima} for the current flowing {\em parallel} to the in-plane B field. The origin of this anisotropy is unknown but resembles the recently observed anisotropy at half-filled Landau levels.Comment: 4 pages, 4 figure

    Zero-field spin splitting in InAs-AlSb quantum wells revisited

    Full text link
    We present magnetotransport experiments on high-quality InAs-AlSb quantum wells that show a perfectly clean single-period Shubnikov-de Haas oscillation down to very low magnetic fields. In contrast to theoretical expectations based on an asymmetry induced zero-field spin splitting, no beating effect is observed. The carrier density has been changed by the persistent photo conductivity effect as well as via the application of hydrostatic pressure in order to influence the electric field at the interface of the electron gas. Still no indication of spin splitting at zero magnetic field was observed in spite of highly resolved Shubnikov- de Haas oscillations up to filling factors of 200. This surprising and unexpected result is discussed in view of other recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure
    • …
    corecore