276 research outputs found
Orthogonality catastrophe in a composite fermion liquid
We discuss the emergence of an orthogonality catastrophe in the response of a
composite fermion liquid as the filling factor \nu approaches 1/2m, where
m=1,2,3.... A tunneling experiment is proposed in which dramatic changes in the
I-V characteristic should be observable as \nu is varied. Explicit I-V
characteristics calculated within the so-called Modified Random Phase
Approximation, are provided for \nu=1/3 -> \nu=1/2.Comment: Latex two-column 6 pages including 5 figure
Spin Susceptibility of an Ultra-Low Density Two Dimensional Electron System
We determine the spin susceptibility in a two dimensional electron system in
GaAs/AlGaAs over a wide range of low densities from 2cm to
4cm. Our data can be fitted to an equation that describes
the density dependence as well as the polarization dependence of the spin
susceptibility. It can account for the anomalous g-factors reported recently in
GaAs electron and hole systems. The paramagnetic spin susceptibility increases
with decreasing density as expected from theoretical calculations.Comment: 5 pages, 2 eps figures, to appear in PR
Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression
Resistance, magnetoresistance and their temperature dependencies have been
investigated in the 2D hole gas at a [001] p-GaAs/AlGaAs
heterointerface under [110] uniaxial compression. Analysis performed in the
frame of hole-hole scattering between carriers in the two spin splitted
subbands of the ground heavy hole state indicates, that h-h scattering is
strongly suppressed by uniaxial compression. The decay time of the
relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3
kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.
Experimental studies of the fractional quantum Hall effect in the first excited Landau level
We present a spectrum of experimental data on the fractional quantum Hall
effect (FQHE) states in the first excited Landau level, obtained in an
ultrahigh mobility two-dimensional electron system (2DES) and at very low
temperatures and report the following results: For the even-denominator FQHE
states, the sample dependence of the nu=5/2 state clearly shows that disorder
plays an important role in determining the energy gap at nu=5/2. For the
developing nu=19/8 FQHE state the temperature dependence of the Rxx minimum
implies an energy gap of ~5mK.The energy gaps of the odd-denominator FQHE
states at nu=7/3 and 8/3 also increase with decreasing disorder, similar to the
gap at 5/2 state. Unexpectedly and contrary to earlier data on lower mobility
samples, in this ultra-high quality specimen, the nu=13/5 state is missing,
while its particle-hole conjugate state, the nu=12/5 state, is a fully
developed FQHE state. We speculate that this disappearance might indicate a
spin polarization of the nu=13/5 state. Finally, the temperature dependence is
studied for the two-reentrant integer quantum Hall states around nu=5/2 and is
found to show a very narrow temperature range for the transition from quantized
to classical value.Comment: to be publishe
Reorientation of Anisotropy in a Square Well Quantum Hall Sample
We have measured magnetotransport at half-filled high Landau levels in a
quantum well with two occupied electric subbands. We find resistivities that
are {\em isotropic} in perpendicular magnetic field but become strongly {\em
anisotropic} at = 9/2 and 11/2 on tilting the field. The anisotropy
appears at an in-plane field, 2.5T, with the easy-current
direction {\em parallel} to but rotates by 90 at 10T and points now in the same direction as in single-subband samples.
This complex behavior is in quantitative agreement with theoretical
calculations based on a unidirectional charge density wave state model.Comment: 4 pages, 4 figure
Two-subband electron transport in nonideal quantum wells
Electron transport in nonideal quantum wells (QW) with large-scale variations
of energy levels is studied when two subbands are occupied. Although the mean
fluctuations of these two levels are screened by the in-plane redistribution of
electrons, the energies of both levels remain nonuniform over the plane. The
effect of random inhomogeneities on the classical transport is studied within
the framework of a local response approach for weak disorder. Both short-range
and small-angle scattering mechanisms are considered. Magnetotransport
characteristics and the modulation of the effective conductivity by transverse
voltage are evaluated for different kinds of confinement potentials (hard wall
QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure
Experimental evidence for the formation of stripe phases in Si/SiGe
We observe pronounced transport anisotropies in magneto-transport experiments
performed in the two-dimensional electron system of a Si/SiGe heterostructure.
They occur when an in-plane field is used to tune two Landau levels with
opposite spin to energetic coincidence. The observed anisotropies disappear
drastically for temperatures above 1 K. We propose that our experimental
findings may be caused by the formation of a unidirectional stripe phase
oriented perpendicular to the in-plane field.Comment: 4 pages, 3 figure
Highly Anisotropic Transport in the Integer Quantum Hall Effect
At very large tilt of the magnetic (B) field with respect to the plane of a
two-dimensional electron system the transport in the integer quantum Hall
regime at = 4, 6, and 8 becomes strongly anisotropic. At these filling
factors the usual {\em deep minima} in the magneto-resistance occur for the
current flowing {\em perpendicular} to the in-plane B field direction but
develop into {\em strong maxima} for the current flowing {\em parallel} to the
in-plane B field. The origin of this anisotropy is unknown but resembles the
recently observed anisotropy at half-filled Landau levels.Comment: 4 pages, 4 figure
Zero-field spin splitting in InAs-AlSb quantum wells revisited
We present magnetotransport experiments on high-quality InAs-AlSb quantum
wells that show a perfectly clean single-period Shubnikov-de Haas oscillation
down to very low magnetic fields. In contrast to theoretical expectations based
on an asymmetry induced zero-field spin splitting, no beating effect is
observed. The carrier density has been changed by the persistent photo
conductivity effect as well as via the application of hydrostatic pressure in
order to influence the electric field at the interface of the electron gas.
Still no indication of spin splitting at zero magnetic field was observed in
spite of highly resolved Shubnikov- de Haas oscillations up to filling factors
of 200. This surprising and unexpected result is discussed in view of other
recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.
Anisotropy and periodicity in the density distribution of electrons in a quantum-well
We use low temperature near-field optical spectroscopy to image the electron
density distribution in the plane of a high mobility GaAs quantum well. We find
that the electrons are not randomly distributed in the plane, but rather form
narrow stripes (width smaller than 150 nm) of higher electron density. The
stripes are oriented along the [1-10 ] crystal direction, and are arranged in a
quasi-periodic structure. We show that elongated structural mounds, which are
intrinsic to molecular beam epitaxy, are responsible for the creation of this
electron density texture.Comment: 10 pages, 3 figure
- …